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The first tidbit

The Smith normal form

of some matrices

connected with Young diagrams
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Extended Young diagrams

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram

(3,1)
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Extended Young diagrams

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram
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λ∗: λ extended by a border strip along its entire
boundary
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Extended Young diagrams

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram

(3,1)

λ∗: λ extended by a border strip along its entire
boundary

(3,1)* = (4,4,2)
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Initialization

Insert 1 into each square of λ∗/λ.

1

1 1

1 1

1

(3,1)* = (4,4,2)
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Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.
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Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.

t
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Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.

t

Two Enumerative Tidbits – p.



Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

2

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

2

3

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

3 2

25

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

3

5 29

2

1 1 1

1 1

1
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Uniqueness

Easy to see: the numbers nt are well-defined and
unique.
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Uniqueness

Easy to see: the numbers nt are well-defined and
unique.

Why? Expand det Mt by the first row. The
coefficient of nt is 1 by induction.
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.

t
λ = (4,4,3)
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.

=

(  ) = (3,2)tλ

(4,4,3)λ  
t
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uλ

uλ = #{µ : µ ⊆ λ}

Two Enumerative Tidbits – p.



uλ

uλ = #{µ : µ ⊆ λ}

Example. u(2,1) = 5:

φ
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uλ

uλ = #{µ : µ ⊆ λ}

Example. u(2,1) = 5:

φ

There is a determinantal formula for uλ, due
essentially to MacMahon and later Kreweras
(not needed here).
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).

Theorem. nt = f(λ(t)).
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).

Theorem. nt = f(λ(t)).

Proofs. 1. Induction (row and column
operations).

2. Nonintersecting lattice paths.
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An example

37 2 1

1 1 12

1 1
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An example

37 2 1

1 1 12

1 1

φ

Two Enumerative Tidbits – p. 11



Smith normal form

A: n × n matrix over commutative ring R (with 1)

Suppose there exist P ,Q ∈ GL(n,R) such that

PAQ = B = diag(d1d2 · · · dn, d1d2 · · · dn−1, . . . , d1),

where di ∈ R. We then call B a Smith normal
form (SNF) of A.
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Smith normal form

A: n × n matrix over commutative ring R (with 1)

Suppose there exist P ,Q ∈ GL(n,R) such that

PAQ = B = diag(d1d2 · · · dn, d1d2 · · · dn−1, . . . , d1),

where di ∈ R. We then call B a Smith normal
form (SNF) of A.

NOTE.

unit · det(A) = det(B) = dn
1d

n−1
2 · · · dn.

Thus SNF is a refinement of det(A).
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Existence of SNF

If R is a PID, such as Z or K[x] (K = field), then
A has a unique SNF up to units.
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Existence of SNF

If R is a PID, such as Z or K[x] (K = field), then
A has a unique SNF up to units.

Otherwise A “typically” does not have a SNF but
may have one in special cases.
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Algebraic interpretation of SNF

R: a PID

A: an n × n matrix over R with det(A) 6= 0 and
rows v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Two Enumerative Tidbits – p. 14



Algebraic interpretation of SNF

R: a PID

A: an n × n matrix over R with det(A) 6= 0 and
rows v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Theorem.

Rn/(v1, . . . , vn) ∼= (R/e1R) ⊕ · · · ⊕ (R/enR).
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An explicit formula for SNF

R: a PID

A: an n × n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A
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An explicit formula for SNF

R: a PID

A: an n × n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A

Theorem. en−i+1en−i+2 · · · en is the gcd of all i × i
minors of A.

minor: determinant of a square submatrix.

Special case: en is the gcd of all entries of A.
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Many indeterminates

For each square (i, j) ∈ λ, associate an
indeterminate xij (matrix coordinates).
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Many indeterminates

For each square (i, j) ∈ λ, associate an
indeterminate xij (matrix coordinates).

x

x x x

x

11 12 13

21 22
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A refinement of uλ

uλ(x) =
∑

µ⊆λ

∏

(i,j)∈λ/µ

xij
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A refinement of uλ

uλ(x) =
∑

µ⊆λ

∏

(i,j)∈λ/µ

xij

d e

c

λ/µ

cba

d e

λ µ

∏

(i,j)∈λ/µ

xij = cde
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An example

ed

a cb

abcde+bcde+bce+cde
     +ce+de+c+e+1

bce+ce+c
   +e+1 c+1

de+e+1 e+1 1 1

1

111
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At

At =
∏

(i,j)∈λ(t)

xij
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At

At =
∏

(i,j)∈λ(t)

xij

t

n o

a cb d e

f g h i

j k ml
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At

At =
∏

(i,j)∈λ(t)

xij

t

n o

a c d e

f g h i

j k ml

b

At = bcdeghiklmo
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The main theorem

Theorem. Let t = (i, j). Then Mt has SNF

diag(Aij, Ai−1,j−1, . . . , 1).
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The main theorem

Theorem. Let t = (i, j). Then Mt has SNF

diag(Aij, Ai−1,j−1, . . . , 1).

Proof. 1. Explicit row and column operations
putting Mt into SNF.

2. (C. Bessenrodt) Induction.

Two Enumerative Tidbits – p. 20



An example

ed

a cb

abcde+bcde+bce+cde
     +ce+de+c+e+1

bce+ce+c
   +e+1 c+1

de+e+1 e+1 1 1

1

111
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An example

ed

a cb

abcde+bcde+bce+cde
     +ce+de+c+e+1

bce+ce+c
   +e+1 c+1

de+e+1 e+1 1 1

1

111

SNF = diag(abcde, e, 1)
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A special case

Let λ be the staircase δn = (n − 1, n − 2, . . . , 1).
Set each xij = q.
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A special case

Let λ be the staircase δn = (n − 1, n − 2, . . . , 1).
Set each xij = q.
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A special case

Let λ be the staircase δn = (n − 1, n − 2, . . . , 1).
Set each xij = q.

uδn−1
(x)

∣
∣
xij=q

counts Dyck paths of length 2n by

(scaled) area, and is thus the well-known
q-analogue Cn(q) of the Catalan number Cn.
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A q-Catalan example

C3(q) = q3 + q2 + 2q + 1
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A q-Catalan example

C3(q) = q3 + q2 + 2q + 1

∣
∣
∣
∣
∣
∣
∣

C4(q) C3(q) 1 + q

C3(q) 1 + q 1

1 + q 1 1

∣
∣
∣
∣
∣
∣
∣

SNF
∼ diag(q6, q, 1)
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A q-Catalan example

C3(q) = q3 + q2 + 2q + 1

∣
∣
∣
∣
∣
∣
∣

C4(q) C3(q) 1 + q

C3(q) 1 + q 1

1 + q 1 1

∣
∣
∣
∣
∣
∣
∣

SNF
∼ diag(q6, q, 1)

q-Catalan determinant previously known

SNF is new
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The second tidbit

A distributive lattice associated with

three-term arithmetic progressions
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Numberplay blog problem

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?
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Numberplay blog problem

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

bad: 1,2,3,4,5,6,7,8
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Numberplay blog problem

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

bad: 1,2,3,4,5,6,7,8

1,4,7 is a monochromatic 3-term progression
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Numberplay blog problem

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

bad: 1,2,3,4,5,6,7,8

1,4,7 is a monochromatic 3-term progression

good: 1,2,3,4,5,6,7,8.
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Numberplay blog problem

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

bad: 1,2,3,4,5,6,7,8

1,4,7 is a monochromatic 3-term progression

good: 1,2,3,4,5,6,7,8.

Finally proved by Noam Elkies.
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Compatible pairs

Elkies’ proof is related to the following question:

Let 1 ≤ i < j < k ≤ n and 1 ≤ a < b < c ≤ n.

{i, j, k} and {a, b, c} are compatible if there exist
integers x1 < x2 < · · · < xn such that xi, xj, xk is
an arithmetic progression and xa, xb, xc is an
arithmetic progression.
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An example

Example. {1, 2, 3} and {1, 2, 4} are not
compatible. Similarly 124 and 134 are not
compatible.
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An example

Example. {1, 2, 3} and {1, 2, 4} are not
compatible. Similarly 124 and 134 are not
compatible.

123 and 134 are compatible, e.g.,

(x1, x2, x3, x4) = (1, 2, 3, 5).
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Elkies’ question

What subsets S ⊆
(
[n]
3

)
have the property that

any two elements of S are compatible?
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Elkies’ question

What subsets S ⊆
(
[n]
3

)
have the property that

any two elements of S are compatible?

Example. When n = 4 there are eight such
subsets S:

∅, {123}, {124}, {134}, {234},

{123, 134}, {123, 234}, {124, 234}.

Not {123, 124}, for instance.
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Elkies’ question

What subsets S ⊆
(
[n]
3

)
have the property that

any two elements of S are compatible?

Example. When n = 4 there are eight such
subsets S:

∅, {123}, {124}, {134}, {234},

{123, 134}, {123, 234}, {124, 234}.

Not {123, 124}, for instance.
Let Mn be the collection of all such S ⊆

(
[n]
3

)
, so

for instance #M4 = 8.
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Another example

Example. For n = 5 one example is

S = {123, 234, 345, 135} ∈ M5,

achieved by 1 < 2 < 3 < 4 < 5.
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Conjecture of Elkies

Conjecture. #Mn = 2(
n−1

2
).
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Conjecture of Elkies

Conjecture. #Mn = 2(
n−1

2
).

Proof (with Fu Liu).
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Conjecture of Elkies

Conjecture. #Mn = 2(
n−1

2
).

Proof (with Fu Liu ).
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A poset onMn

Jim Propp: Let Qn be the subposet of
[n] × [n] × [n] (ordered componentwise) defined
by

Qn = {(i, j, k) : i + j < n + 1 < j + k}.

antichain: a subset A of a poset such that if
x, y ∈ A and x ≤ y, then x = y

There is a simple bijection from the antichains of
Qn to Mn induced by (i, j, k) 7→ (i, n + 1 − j, k).
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The casen = 4

133 124 123

124134 224

134

234

i, 5−j, ki, j, k (             )(         )

antichains:

∅, {123}, {124}, {134}, {234},

{123, 134}, {123, 234}, {124, 234}.
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Order ideals

order ideal: a subset I of a poset such that if
y ∈ I and x ≤ y, then x ∈ I

There is a bijection between antichains A of a
poset P and order ideals I of P , namely, A is the
set of maximal elements of I.
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Order ideals

order ideal: a subset I of a poset such that if
y ∈ I and x ≤ y, then x ∈ I

There is a bijection between antichains A of a
poset P and order ideals I of P , namely, A is the
set of maximal elements of I.

J(P ): set of order ideals of P , ordered by
inclusion (a distributive lattice)
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Join-irreducibles

join-irreducible of a finite lattice L: an element y
such that exactly one element x is maximal with
respect to x < y (i.e., y covers x)

Theorem (FTFDL). If L is a finite distributive
lattice with the subposet P of join-irreducibles,
then L ∼= J(P ).
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The casen = 4

123

124

134

234

124

123

234

134

J(P) = M4

4P = Q
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A partial order on Mn

Recall: there is a simple bijection from the
antichains of Qn to Mn induced by
(i, j, k) 7→ (i, n + 1 − j, k).

Also a simple bijection from antichains of a finite
poset to order ideals.
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A partial order on Mn

Recall: there is a simple bijection from the
antichains of Qn to Mn induced by
(i, j, k) 7→ (i, n + 1 − j, k).

Also a simple bijection from antichains of a finite
poset to order ideals.

Hence we get a bijection J(Qn) → Mn that
induces a distributive lattice structure on Mn.
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Semistandard tableaux

T : semistandard Young tableau of shape of
shape δn−1 = (n − 2, n − 3, . . . , 1), maximum part
≤ n − 1

1 1

5

4 4

2 3 3

2 5
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Semistandard tableaux

T : semistandard Young tableau of shape of
shape δn−1 = (n − 2, n − 3, . . . , 1), maximum part
≤ n − 1

1 1

5

4 4

2 3 3

2 5

Ln: poset of all such T , ordered componentwise
(a distributive lattice)

Two Enumerative Tidbits – p. 37



L4 and M4 compared

134

124

123

234

11
2

12
2

11
3

13
2

12
3

22
3

23
3

13
3

M4 L4
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Ln
∼
= Mn

Theorem. Ln
∼= Mn (∼= J(Qn)).
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Ln
∼
= Mn

Theorem. Ln
∼= Mn (∼= J(Qn)).

Proof. Show that the poset of join-irreducibles of
Ln is isomorphic to Qn. �
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#Ln

Theorem. #Ln = 2(
n−1

2
) (proving the conjecture

of Elkies).
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#Ln

Theorem. #Ln = 2(
n−1

2
) (proving the conjecture

of Elkies).

Proof. #Ln = sδn−2
(1, 1, . . . , 1
︸ ︷︷ ︸

n−1

). Now use

hook-content formula. �
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#Ln

Theorem. #Ln = 2(
n−1

2
) (proving the conjecture

of Elkies).

Proof. #Ln = sδn−2
(1, 1, . . . , 1
︸ ︷︷ ︸

n−1

). Now use

hook-content formula. �

In fact,

sδn−2
(x1, . . . , xn−1) =

∏

1≤i<j≤n−1

(xi + xj).
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Maximum size elements ofMn

f(n): size of largest element S of Mn.

Two Enumerative Tidbits – p. 41



Maximum size elements ofMn

f(n): size of largest element S of Mn.

Example. Recall

M4 = {∅, {123}, {124}, {134}, {234},

{123, 134}, {123, 234}, {124, 234}}.

Thus f(4) = 2.
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Maximum size elements ofMn

f(n): size of largest element S of Mn.

Example. Recall

M4 = {∅, {123}, {124}, {134}, {234},

{123, 134}, {123, 234}, {124, 234}}.

Thus f(4) = 2.

Since elements of Mn are the antichains of Qn,
f(n) is also the number of maximum size
antichains of Qn.
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Evaluation of f(n)

Easy result (Elkies):

f(n) =

{

m2, n = 2m + 1

m(m − 1), n = 2m.
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Evaluation of f(n)

Easy result (Elkies):

f(n) =

{

m2, n = 2m + 1

m(m − 1), n = 2m.

Conjecture #2 (Elkies). Let g(n) be the number
of antichains of Qn of size f(n). (E.g., g(4) = 3.)
Then

g(n) =

{

2m(m−1), n = 2m + 1

2(m−1)(m−2)(2m − 1), n = 2m.

Two Enumerative Tidbits – p. 42



Maximum size antichains

P : finite poset with largest antichain of size m

J(P ): lattice of order ideals of P

D(P ) := {x ∈ J(P ) : x covers m elements} (in
bijection with m-element antichains of P )
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Maximum size antichains

P : finite poset with largest antichain of size m

J(P ): lattice of order ideals of P

D(P ) := {x ∈ J(P ) : x covers m elements} (in
bijection with m-element antichains of P )

Easy theorem (Dilworth, 1960). D(P ) is a
sublattice of J(P ) (and hence is a distributive
lattice)
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Example: M4

134

234

123

124

123

124

134

234

RD(M  ) = J(R  )

4

44 4

4Q M   = J(Q  ) 4
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Application to Conjecture 2

Recall: g(n) is the number of antichains of Qn of
maximum size f(n).

Hence g(n) = #D(Qn). The lattice D(Qn) is
difficult to work with directly, but since it is
distributive it is determined by its join-irreducibles
Rn.
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Examples ofRn

R6 R7 4= Q   + Q4
~
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Structure of Rn

n = 2m + 1: Rn
∼= Qm+1 + Qm+1. Hence

g(n) = #J(Rn) =
(

2(
m

2
)
)2

= 2m(m−1),

proving the Conjecture 2 of Elkies for n odd.
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Structure of Rn

n = 2m + 1: Rn
∼= Qm+1 + Qm+1. Hence

g(n) = #J(Rn) =
(

2(
m

2
)
)2

= 2m(m−1),

proving the Conjecture 2 of Elkies for n odd.

n = 2m: more complicated. Rn consists of two
copies of Qm+1 with an additional cover relation,
but can still be analyzed.
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Structure of Rn

n = 2m + 1: Rn
∼= Qm+1 + Qm+1. Hence

g(n) = #J(Rn) =
(

2(
m

2
)
)2

= 2m(m−1),

proving the Conjecture 2 of Elkies for n odd.

n = 2m: more complicated. Rn consists of two
copies of Qm+1 with an additional cover relation,
but can still be analyzed.

Thus Conjecture 2 is true for all n.
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The last slide
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The last slide
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The last slide
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