Two Enumerative Tidbits

Richard P. Stanley
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| The first. tidbit

The Smith normal form
of some matrices

connected with Young diagrams

—



| Extended Young diagrams

A a partition (A, A9, ... ), identified with its Young
diagram
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Extended Young diagrams

A a partition (A, A9, ... ), identified with its Young
diagram

(3.1)

A*. )\ extended by a border strip along its entire

boundary
y (3,1)* = (4,4.2) |




| Initialization

Insert 1 into each square of \*/\.

1111 GBL* =442




Let ¢t € \. Let M; be the largest square of \* with
t as the upper left-hand corner.



Let ¢t € \. Let M; be the largest square of \* with
t as the upper left-hand corner.




Let ¢t € \. Let M; be the largest square of \* with
t as the upper left-hand corner.




I Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n; so that
det Mt = 1.
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| Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n; so that
det Mt = 1.

— — e—p= m— E—



| Unigueness

Easy to see: the numbers n; are well-defined and
unique.



| Unigueness

Easy to see: the numbers n; are well-defined and
unique.

Why? Expand det M; by the first row. The
coefficient of n; Is 1 by induction.

—



If t € A\, let A(t) consist of all squares of A to the
southeast of ¢.
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If t € A\, let A(t) consist of all squares of A to the
southeast of ¢.

A= (4,4,3)
A(t) =(3,2)










uy = F#{p S A}

Example. u ) = 5:

There Is a determinantal formula for «,, due
essentially to MacMahon and later Kreweras

(not needed here).



Carlitz-Scoville-Roselle theorem

# Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over 7).

—
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Carlitz-Scoville-Roselle theorem

# Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over 7).

Theorem. n; = f(A()).

Proofs. 1. Induction (row and column
operations).

2. Nonintersecting lattice paths.

—



An example




An example




| Smith normal form

A n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ = B = d1ag(d1d2 T dn, dldg T dn—l; C ,dl),

where d. ¢ R. We then call B a Smith normal
form (SNF) of A.

—



| Smith-normal form

A n x n matrix over commutative ring R (with 1)

Suppose there exist P, Q € GL(n, R) such that
PAQ = B = diag(didy - - - dp, dida - - - dyy—1, ..., dy),

where d. ¢ R. We then call B a Smith normal
form (SNF) of A.

NOTE.

unit - det(A) = det(B) = d?dy " - - - d,,.

Thus SNF is a refinement of det(A). |



| Existence of SNF

If Ris aPID, such as Z or K|x| (K = field), then
A has a unique SNF up to units.



| Existence of SNF

If Ris a PID, such as Z or K|z| (K = field), then
A has a unigue SNF up to units.

Otherwise A “typically” does not have a SNF but
may have one In special cases.

—



I Algebraic interpretation of SNF

R: aPID

A: ann x n matrix over R with det(A) # 0 and
rows vy,...,v, € R"

diag(el, €y ... ,Gn): SNF of A



I Algebraic interpretation of SNF

R: aPID

A: ann x n matrix over R with det(A) # 0 and
rows vy,...,v, € R"

diag(el, €y ... ,Gn): SNF of A
Theorem.

R"/(vi,...,v,) Z (R/e1R)®--- D (R/e,R).

—



I An explicit formula for SNF

R: aPID
A: ann x n matrix over R with det(A) # 0

diag(eqy,es,...,¢e,): SNF of A



| An explicit formula for SNF

R: a PID
A: ann x n matrix over R with det(A) # 0
diag(eq,eq,...,e,): SNF of A

Theorem. e, _;11€,—ixo---€,1Sthe gcd of all 7 x ¢
minors of A.

minor: determinant of a square submatrix.

Special case: e, Is the gcd of all entries of A.



| Many indeterminates

For each square (i, j) € A\, associate an
Indeterminate x;; (matrix coordinates).



| Many indeterminates

For each square (i, j) € A\, associate an
Indeterminate x;; (matrix coordinates).

X1 | Xz | Kis

X21 X22




| A refinement of u

HEA (i,5)EN 1



| A refinement of u

HEA (i,5)EN 1

H r;; = cde |
(4,7)EN/ 1



I An example

alblc
d
abcde+bcde+bce+cdg PCETCEtC o+l | 1
+ce+de+cte+l tetl :
de+e+1 e+l 1 1
1 |
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A; = bedeghiklmo _l



| The main.theorem

Theorem. Lett = (7, 7). Then M; has SNF
diag(AZ-j, Ai—l,j—la Cee 1)



| The main.theorem

Theorem. Lett = (7, 7). Then M; has SNF
diag(Aij, Ai—l,j—l; Cee 1)

Proof. 1. Explicit row and column operations
putting M; into SNF.

2. (C. Bessenrodt) Induction.

—
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I An example

a C
d
abcde+bcde+bce+cde Pcetce+c il .
+ce+de+cte+1 te+l |
dete+l e+l 1 1
1 1 1

SNF = diag(abcde, e, 1) |
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| A special case

Let A\ be the staircase d,, = (n— 1,n—2,...,1).
Set each z;; = q.

_ e e — — -

_______

us. () |$_,_q counts Dyck paths of length 2n by

(scaled) area, and is thus the well-known

g-analogue C,(q) of the Catalan number C.,. |
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n ] N Cs5(q) = ¢ + q* + 2q + 1
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Cs(q) 1+q 1 |~ diag(¢’,q,1)
1+ ¢ 1 '




A g-Catalan example

N n n Cs3(q) = ¢+ ¢ +2q+ 1

Ca(q) Cs(q) 1+4¢ .
Cs(q) 1+q 1 |~ diag(¢’,q,1)
1+ ¢ 1 '

» ¢-Catalan determinant previously known

—

» SNF Is new



| The second tidbit

A distributive lattice associated with

three-term arithmetic progressions



Numberplay blog problem

New York Times Numberplay blog (March 25,

2013): Let S C Z, #S = 8. Can you two-color .S
such that there 1Is no monochromatic three-term

arithmetic progression?
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Numberplay blog problem

New York Times Numberplay blog (March 25,
2013): Let S C Z, #S = 8. Can you two-color .S
such that there 1Is no monochromatic three-term

arithmetic progression?

bad: 1,2,3,4,5,6,7.,8
1,4, 7 1s a monochromatic 3-term progression

good: 1,2.3.4,5,6,7,8.

Finally proved by Noam Elkies.

—



| Compatible pairs

Elkies’ proof is related to the following question:
letl <i<gj<k<nandl <a<b<c<n.

{2,7,k} and {a, b, c} are compatible if there exist
Integers x; < xy < --- < x, such that x;, z;, zy IS
an arithmetic progression and x,, x;, x. IS an
arithmetic progression.

—



| An example

Example. {1,2,3} and {1,2,4} are not
compatible. Similarly 124 and 134 are not
compatible.



| An example

Example. {1,2,3} and {1,2,4} are not
compatible. Similarly 124 and 134 are not
compatible.

123 and 134 are compatible, e.qg.,
(mla L2,3, $4) — (17 27 37 5)

—
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What subsets S C (') have the property that
any two elements of S are compatible?
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What subsets S C (') have the property that
any two elements of S are compatible?

Example. When n = 4 there are eight such
subsets S:

0, {123}, {124}, {134}, {234},
{123,134}, {123,234}, {124,234}

Not {123,124}, for instance.




| Elkies’ question

What subsets S C (') have the property that
any two elements of S are compatible?

Example. When n = 4 there are eight such
subsets S:

0, {123}, {124}, {134}, {234},
{123,134}, {123,234}, {124,234}

Not {123,124}, for instance.
Let M,, be the collection of all such S C (M) SO

3 )
for instance #M, = 8. |




| Another example

Example. For n = 5 one example Is
S = {123,234,345,135} € Ms,

achieved by 1 <2 <3< 4<5b.



| Conjecture of Elkies

Conjecture. #M, = 2("2"),
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| Conjecture of Elkies

Conjecture. #M, = 2("2"),

Proof (with Fu Liu XI#¥).



| A poset onM,,

Jim Propp: Let (),, be the subposet of
n| X [n] x |n] (ordered componentwise) defined

by
Q.={(i,j,k) :i+j<n+1<j+Ek}

antichain: a subset A of a poset such that If
rx,y € Aand x <y, thenz =y

There Is a simple bijection from the antichains of
Q). to M, induced by (7,7, k) — (i,n+1— 73, k).

—



| The casen — 4

134 224 124 234
N [N
133 124 123 134
(1, ], k) > (i, 54, k)
antichains:

0, {123}, {124}, {134}, {234},

{123,134}, {123,234}, {124, 234} |



| Order Ideals

order ideal: a subset I of a poset such that if
yelandx <y, thenz e[

There Is a bijection between antichains A of a
poset P and order ideals I of P, namely, A Is the
set of maximal elements of 1.

—



| Order ideals

order ideal: a subset I of a poset such that if
yelandx <y, thenz e[

There Is a bijection between antichains A of a
poset P and order ideals I of P, namely, A Is the
set of maximal elements of 1.

J(P): set of order ideals of P, ordered by
Inclusion (a distributive lattice)

—



| Join-irreducibles

join-irreducible of a finite lattice L: an element vy
such that exactly one element x iIs maximal with
respectto x < y (l.e., y covers x)

Theorem (FTEDL). If L is a finite distributive

lattice with the subposet P of join-irreducibles,
then L = J(P).

—



| The casen — 4

124 234
SN
123 134
124
J(P)=M, 234
123 134



I A partial order on M,

Recall: there Is a simple bijection from the
antichains of (),, to M,, induced by

Also a simple bijection from antichains of a finite
poset to order ideals.

—



| A partial order on M,

Recall: there Is a simple bijection from the
antichains of (),, to M,, induced by

Also a simple bijection from antichains of a finite
poset to order ideals.

Hence we get a bijection J(Q,) — M, that
Induces a distributive lattice structure on M,,.

—



| Semistandard tableaux

T': semistandard Young tableau of shape of

shape d,.1 = (n—2,n—3,...,1), maximum part
<n-—1

11125

2133

4 4

5




| Semistandard tableaux

T': semistandard Young tableau of shape of

shape d,.1 = (n—2,n—3,...,1), maximum part
<n-—1

11125

2133

4 4

5

L,,: poset of all such T', ordered componentwise
(a distributive lattice) |



I L, and M, compared

124 22

234

123 134 3






Y,
n:Mn

Theorem. L, = M, (= J(Q.,)).

Proof. Show that the poset of join-irreducibles of
L, 1s Isomorphic to Q,,.




Theorem. #L, = 2{"2') (proving the conjecture
of Elkies).



Theorem. #L, = 2{"2') (proving the conjecture
of Elkies).
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n—1

hook-content formula.
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Theorem. #L, = 2{"2') (proving the conjecture
of Elkies).

Proof. #L, =ss _,(1,1,...,1). Now use
N———

n—1

hook-content formula.

In fact,

S5 (X1, Tp1) = H (z; + ;).

1<i<j<n—1
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f(n): size of largest element S of M,,.
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| Maximum size elements ofM,,

f(n): size of largest element S of M,,.

Example. Recall

{123,134}, {123, 234}, {124,234} }.
Thus f(4) = 2.

Since elements of M,, are the antichains of (),,,
f(n) is also the number of maximum size

antichains of @),,. |



| Evaluation of f(n)

Easy result (Elkies):

)
m?, n=2m+1

f(n) = s

\ m(m —1), n=2m.



| Evaluation of f(n)

Easy result (Elkies):

( 2
m*, n=2m-+1

m(m — 1), n=2m.

\

Conjecture #2 (Elkies). Let g(n) be the number
of antichains of @),, of size f(n). (E.g., g(4) = 3.)
Then

f om(m=1) p — 9 + 1

2t Eem — 1), no=2m. |

g(n) = 4




| Maximum size antichains

P: finite poset with largest antichain of size m

J(P): lattice of order ideals of P

D(P) :={x € J(P) : x covers m elements} (in
bijection with m-element antichains of P)

—



| Maximum size antichains

P: finite poset with largest antichain of size m
J(P): lattice of order ideals of P

D(P) :={x € J(P) : x covers m elements} (in
bijection with m-element antichains of P)

Easy theorem (Dilworth, 1960). D(P) is a
sublattice of J(P) (and hence is a distributive

lattice)
—



I Example: M,

124
234
124 234
I\\\\\I 123 134
123 134
Q. M, =J(Q)
®

| |

D(M4) = J(R4 ) R4 4



| Application to Conjecture 2

Recall: g(n) is the number of antichains of @),, of
maximum size f(n).

Hence g(n) = #D(Q,). The lattice D(Q,,) is
difficult to work with directly, but since it is
distributive 1t Is determined by its join-irreducibles

R,.

—



I Examples of R,




| Structure of R,

n=2m+1. R, = Q,,.1 + Q,,.1. Hence

o(n) = #I(R,) = (2) =m0

proving the Conjecture 2 of Elkies for n odd.

—



| Structure of R,

n=2m+1. R, = 0,1 +0,.1. Hence

AN 2
gn) = #J(R,) = (2(2))" = 2mm),
proving the Conjecture 2 of Elkies for n odd.

n = 2m. more complicated. R, consists of two
copies of (),,..1 with an additional cover relation,

but can still be analyzed.



| Structure of R,

n=2m+1. R, = 0,1 +0,.1. Hence

AN 2
gn) = #J(R,) = (2(2))" = 2mm),
proving the Conjecture 2 of Elkies for n odd.

n = 2m. more complicated. R, consists of two
copies of (),,..1 with an additional cover relation,

but can still be analyzed.

Thus Conjecture 2 is true for all n.



| The last slide
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