Two Enumerative Tidbits Richard P. Stanley M.I.T. ## The first tidbit # The Smith normal form of some matrices connected with Young diagrams # Extended Young diagrams λ : a partition $(\lambda_1, \lambda_2, ...)$, identified with its Young diagram # Extended Young diagrams λ : a partition $(\lambda_1, \lambda_2, ...)$, identified with its Young diagram λ^* : λ extended by a border strip along its entire boundary # Extended Young diagrams λ : a partition $(\lambda_1, \lambda_2, ...)$, identified with its Young diagram λ^* : λ extended by a border strip along its entire boundary $$(3,1)$$ * = $(4,4,2)$ ## **Initialization** Insert 1 into each square of λ^*/λ . | | | | 1 | |---|---|---|---| | | 1 | 1 | 1 | | 1 | 1 | | | $$(3,1)$$ * = $(4,4,2)$ # M_t Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner. Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner. Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner. # Uniqueness Easy to see: the numbers n_t are well-defined and unique. # Uniqueness Easy to see: the numbers n_t are well-defined and unique. Why? Expand $\det M_t$ by the first row. The coefficient of n_t is 1 by induction. # $oldsymbol{\lambda}(t)$ If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t. # $\lambda(t)$ If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t. $$\lambda = (4,4,3)$$ # $\lambda(t)$ If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t. $$\lambda = (4,4,3)$$ $$\lambda(t) = (3,2)$$ ## u_{λ} $$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$ #### u_{λ} $$u_{\lambda} = \#\{\mu : \mu \subseteq \lambda\}$$ **Example.** $u_{(2,1)} = 5$: $$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$ **Example.** $u_{(2,1)} = 5$: There is a determinantal formula for u_{λ} , due essentially to **MacMahon** and later **Kreweras** (not needed here). #### Carlitz-Scoville-Roselle theorem - **Berlekamp** (1963) first asked for n_t (mod 2) in connection with a coding theory problem. - Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}). #### Carlitz-Scoville-Roselle theorem - **Berlekamp** (1963) first asked for n_t (mod 2) in connection with a coding theory problem. - Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}). Theorem. $n_t = f(\lambda(t))$. #### Carlitz-Scoville-Roselle theorem - **Berlekamp** (1963) first asked for n_t (mod 2) in connection with a coding theory problem. - Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}). Theorem. $n_t = f(\lambda(t))$. **Proofs.** 1. Induction (row and column operations). 2. Nonintersecting lattice paths. # An example # An example ## **Smith normal form** **A**: $n \times n$ matrix over commutative ring **R** (with 1) Suppose there exist $P, Q \in GL(n, R)$ such that $$PAQ = B = diag(d_1d_2 \cdots d_n, d_1d_2 \cdots d_{n-1}, \dots, d_1),$$ where $d_i \in R$. We then call B a Smith normal form (SNF) of A. ## **Smith normal form** **A**: $n \times n$ matrix over commutative ring **R** (with 1) Suppose there exist $P, Q \in GL(n, R)$ such that $$PAQ = B = diag(d_1d_2 \cdots d_n, d_1d_2 \cdots d_{n-1}, \dots, d_1),$$ where $d_i \in R$. We then call B a Smith normal form (SNF) of A. NOTE. unit $$\det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n$$. Thus SNF is a refinement of det(A). ## **Existence of SNF** If R is a PID, such as \mathbb{Z} or K[x] (K = field), then A has a unique SNF up to units. ## **Existence of SNF** If R is a PID, such as \mathbb{Z} or K[x] (K = field), then A has a unique SNF up to units. Otherwise A "typically" does not have a SNF but may have one in special cases. # Algebraic interpretation of SNF \mathbf{R} : a PID **A**: an $n \times n$ matrix over R with $det(A) \neq 0$ and rows $v_1, \ldots, v_n \in R^n$ $\operatorname{diag}(e_1, e_2, \dots, e_n)$: SNF of A # Algebraic interpretation of SNF \mathbf{R} : a PID **A**: an $n \times n$ matrix over R with $det(A) \neq 0$ and rows $v_1, \ldots, v_n \in R^n$ $\operatorname{diag}(e_1, e_2, \dots, e_n)$: SNF of A #### Theorem. $$R^n/(v_1,\ldots,v_n)\cong (R/e_1R)\oplus\cdots\oplus (R/e_nR).$$ # An explicit formula for SNF \mathbf{R} : a PID **A**: an $n \times n$ matrix over R with $det(A) \neq 0$ $\operatorname{diag}(e_1, e_2, \dots, e_n)$: SNF of A #### An explicit formula for SNF \mathbf{R} : a PID **A**: an $n \times n$ matrix over R with $det(A) \neq 0$ $\operatorname{diag}(e_1, e_2, \dots, e_n)$: SNF of A Theorem. $e_{n-i+1}e_{n-i+2}\cdots e_n$ is the gcd of all $i\times i$ minors of A. minor: determinant of a square submatrix. **Special case:** e_n is the gcd of all entries of A. #### Many indeterminates For each square $(i, j) \in \lambda$, associate an indeterminate x_{ij} (matrix coordinates). #### Many indeterminates For each square $(i, j) \in \lambda$, associate an indeterminate x_{ij} (matrix coordinates). | X_{11} | x_{12} | X_{13} | |----------|----------|----------| | x_{21} | x_{22} | | #### A refinement of u_{λ} $$u_{\lambda}(x) = \sum_{\mu \subseteq \lambda} \prod_{(i,j) \in \lambda/\mu} x_{ij}$$ #### A refinement of u_{λ} $$u_{\lambda}(x) = \sum_{\mu \subseteq \lambda} \prod_{(i,j) \in \lambda/\mu} x_{ij}$$ $$\lambda/\mu$$ $$\prod_{(i,j)\in\lambda/\mu} x_{ij} = cde$$ # An example | a | b | C | |---|---|---| | d | e | | | abcde+bcde+bce+cde
+ce+de+c+e+1 | bce+ce+c
+e+1 | c+1 | 1 | |------------------------------------|------------------|-----|---| | de+e+1 | e+1 | 1 | 1 | | 1 | 1 | 1 | | # A_t $$\mathbf{A_t} = \prod_{(i,j)\in\lambda(t)} x_{ij}$$ $$\mathbf{A_t} = \prod_{(i,j)\in\lambda(t)} x_{ij}$$ | t_{\searrow} | 1 | | | | |----------------|---|---|---|---| | a | b | С | d | e | | f | g | h | i | | | $\int j$ | k | l | m | | | n | 0 | | | • | # A_t $$\mathbf{A_t} = \prod_{(i,j)\in\lambda(t)} x_{ij}$$ | t_{\searrow} | 7 | | | | |----------------|---|---|---|---| | a | b | С | d | e | | f | 8 | h | i | | | $\int j$ | k | l | m | | | n | 0 | | | • | $A_t = bcdeghiklmo$ #### The main theorem Theorem. Let t=(i,j). Then M_t has SNF $\operatorname{diag}(A_{ij},A_{i-1,j-1},\ldots,1)$. #### The main theorem Theorem. Let t = (i, j). Then M_t has SNF $\operatorname{diag}(A_{ij}, A_{i-1, j-1}, \dots, 1)$. **Proof.** 1. Explicit row and column operations putting M_t into SNF. 2. (C. Bessenrodt) Induction. # An example | a | b | c | |---|---|---| | d | e | | | abcde+bcde+bce+cde
+ce+de+c+e+1 | bce+ce+c
+e+1 | c+1 | 1 | |------------------------------------|------------------|-----|---| | de+e+1 | e+1 | 1 | 1 | | 1 | 1 | 1 | | # An example | a | b | c | |---|---|---| | d | e | | | abcde+bcde+bce+cde
+ce+de+c+e+1 | bce+ce+c
+e+1 | c+1 | 1 | |------------------------------------|------------------|-----|---| | de+e+1 | e+1 | 1 | 1 | | 1 | 1 | 1 | | $\mathbf{SNF} = \operatorname{diag}(abcde, e, 1)$ ## A special case Let λ be the staircase $\delta_n = (n-1, n-2, \dots, 1)$. Set each $x_{ij} = q$. # A special case Let λ be the staircase $\delta_n = (n-1, n-2, \dots, 1)$. Set each $x_{ij} = q$. #### A special case Let λ be the staircase $\delta_n = (n-1, n-2, \dots, 1)$. Set each $x_{ij} = q$. $u_{\delta_{n-1}}(x)\big|_{x_{ij}=q}$ counts Dyck paths of length 2n by (scaled) area, and is thus the well-known q-analogue $C_n(q)$ of the Catalan number C_n . # A q-Catalan example $$C_3(q) = q^3 + q^2 + 2q + 1$$ # A q-Catalan example $$C_3(q) = q^3 + q^2 + 2q + 1$$ $$\begin{bmatrix} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{bmatrix} \stackrel{\text{SNF}}{\sim} \operatorname{diag}(q^6, q, 1)$$ # A q-Catalan example $$C_3(q) = q^3 + q^2 + 2q + 1$$ - q-Catalan determinant previously known - SNF is new #### The second tidbit A distributive lattice associated with three-term arithmetic progressions New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression? New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression? bad: 1, 2, 3, 4, 5, 6, 7, 8 New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression? bad: 1, 2, 3, 4, 5, 6, 7, 8 1, 4, 7 is a monochromatic 3-term progression New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression? bad: 1, 2, 3, 4, 5, 6, 7, 8 1, 4, 7 is a monochromatic 3-term progression good: 1, 2, 3, 4, 5, 6, 7, 8. New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression? bad: 1, 2, 3, 4, 5, 6, 7, 8 1, 4, 7 is a monochromatic 3-term progression good: 1, 2, 3, 4, 5, 6, 7, 8. Finally proved by **Noam Elkies**. # Compatible pairs Elkies' proof is related to the following question: Let $1 \le i < j < k \le n$ and $1 \le a < b < c \le n$. $\{i,j,k\}$ and $\{a,b,c\}$ are **compatible** if there exist integers $x_1 < x_2 < \cdots < x_n$ such that x_i, x_j, x_k is an arithmetic progression and x_a, x_b, x_c is an arithmetic progression. #### An example **Example.** $\{1,2,3\}$ and $\{1,2,4\}$ are *not* compatible. Similarly 124 and 134 are *not* compatible. #### An example **Example.** $\{1,2,3\}$ and $\{1,2,4\}$ are *not* compatible. Similarly 124 and 134 are *not* compatible. 123 and 134 are compatible, e.g., $$(x_1, x_2, x_3, x_4) = (1, 2, 3, 5).$$ # Elkies' question What subsets $\mathcal{S} \subseteq \binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible? # Elkies' question What subsets $\mathcal{S} \subseteq \binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible? **Example.** When n = 4 there are eight such subsets S: $$\emptyset$$, $\{123\}$, $\{124\}$, $\{134\}$, $\{234\}$, $\{123, 134\}$, $\{123, 234\}$, $\{124, 234\}$. Not $\{123, 124\}$, for instance. # Elkies' question What subsets $\mathcal{S} \subseteq \binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible? **Example.** When n=4 there are eight such subsets S: $$\emptyset$$, $\{123\}$, $\{124\}$, $\{134\}$, $\{234\}$, $\{123, 134\}$, $\{123, 234\}$, $\{124, 234\}$. Not $\{123, 124\}$, for instance. Let M_n be the collection of all such $S \subseteq {[n] \choose 3}$, so for instance $\#M_4 = 8$. # Another example **Example.** For n=5 one example is $$\mathcal{S} = \{123, 234, 345, 135\} \in M_5,$$ achieved by 1 < 2 < 3 < 4 < 5. ## Conjecture of Elkies Conjecture. $$\#M_n = 2^{\binom{n-1}{2}}$$. ## Conjecture of Elkies Conjecture. $\#M_n = 2^{\binom{n-1}{2}}$. Proof (with Fu Liu). ## Conjecture of Elkies Conjecture. $\#M_n = 2^{\binom{n-1}{2}}$. Proof (with Fu Liu 刘拂). # A poset on M_n Jim Propp: Let Q_n be the subposet of $[n] \times [n] \times [n]$ (ordered componentwise) defined by $$\mathbf{Q_n} = \{(i, j, k) : i + j < n + 1 < j + k\}.$$ antichain: a subset A of a poset such that if $x, y \in A$ and $x \leq y$, then x = y There is a simple bijection from the antichains of Q_n to M_n induced by $(i, j, k) \mapsto (i, n + 1 - j, k)$. ### The case n=4 #### antichains: $$\emptyset$$, $\{123\}$, $\{124\}$, $\{134\}$, $\{234\}$, $\{123, 134\}$, $\{123, 234\}$, $\{124, 234\}$. ### **Order ideals** order ideal: a subset I of a poset such that if $y \in I$ and $x \leq y$, then $x \in I$ There is a bijection between antichains A of a poset P and order ideals I of P, namely, A is the set of maximal elements of I. ### **Order ideals** order ideal: a subset I of a poset such that if $y \in I$ and $x \leq y$, then $x \in I$ There is a bijection between antichains A of a poset P and order ideals I of P, namely, A is the set of maximal elements of I. J(P): set of order ideals of P, ordered by inclusion (a distributive lattice) ### Join-irreducibles **join-irreducible** of a finite lattice L: an element y such that exactly one element x is maximal with respect to x < y (i.e., y covers x) Theorem (FTFDL). If L is a finite distributive lattice with the subposet P of join-irreducibles, then $L \cong J(P)$. ## The case n=4 # A partial order on M_n **Recall:** there is a simple bijection from the antichains of Q_n to M_n induced by $(i, j, k) \mapsto (i, n + 1 - j, k)$. Also a simple bijection from antichains of a finite poset to order ideals. # A partial order on M_n **Recall:** there is a simple bijection from the antichains of Q_n to M_n induced by $(i, j, k) \mapsto (i, n + 1 - j, k)$. Also a simple bijection from antichains of a finite poset to order ideals. Hence we get a bijection $J(Q_n) \to M_n$ that induces a distributive lattice structure on M_n . ### Semistandard tableaux T: semistandard Young tableau of shape of shape $\boldsymbol{\delta_{n-1}} = (n-2, n-3, \dots, 1)$, maximum part < n-1 | 1 | 1 | 2 | 5 | |---|---|---|---| | 2 | 3 | 3 | | | 4 | 4 | | | | 5 | | | | ### Semistandard tableaux T: semistandard Young tableau of shape of shape $\boldsymbol{\delta_{n-1}} = (n-2, n-3, \dots, 1)$, maximum part < n-1 | 1 | 1 | 2 | 5 | |---|---|---|---| | 2 | 3 | 3 | | | 4 | 4 | | | | 5 | | • | | L_n : poset of all such T, ordered componentwise (a distributive lattice) # L_4 and M_4 compared ## $\boldsymbol{L_n}\cong \boldsymbol{M_n}$ Theorem. $L_n \cong M_n \ (\cong J(Q_n))$. # $\boldsymbol{L_n}\cong \boldsymbol{M_n}$ Theorem. $L_n \cong M_n \ (\cong J(Q_n)).$ **Proof.** Show that the poset of join-irreducibles of L_n is isomorphic to Q_n . \square $\#L_n$ Theorem. $\#L_n = 2^{\binom{n-1}{2}}$ (proving the conjecture of Elkies). # $\#L_n$ Theorem. $\#L_n = 2^{\binom{n-1}{2}}$ (proving the conjecture of Elkies). Proof. $$\#L_n = s_{\delta_{n-2}}(\underbrace{1, 1, ..., 1})$$. Now use hook-content formula. $$\#L_n$$ Theorem. $\#L_n = 2^{\binom{n-1}{2}}$ (proving the conjecture of Elkies). **Proof.** $$\#L_n = s_{\delta_{n-2}}(\underbrace{1,1,\ldots,1}_{n-1})$$. Now use hook-content formula. In fact, $$s_{\delta_{n-2}}(x_1, \dots, x_{n-1}) = \prod_{1 \le i < j \le n-1} (x_i + x_j).$$ ## Maximum size elements of M_n f(n): size of largest element S of M_n . ## Maximum size elements of M_n f(n): size of largest element S of M_n . #### Example. Recall $$M_4 = \{\emptyset, \{123\}, \{124\}, \{134\}, \{234\}, \{123, 134\}, \{123, 234\}, \{124, 234\}\}.$$ Thus f(4) = 2. ## Maximum size elements of M_n f(n): size of largest element S of M_n . #### Example. Recall $$M_4 = \{\emptyset, \{123\}, \{124\}, \{134\}, \{234\}, \{123, 134\}, \{123, 234\}, \{124, 234\}\}.$$ Thus f(4) = 2. Since elements of M_n are the antichains of Q_n , f(n) is also the number of maximum size antichains of Q_n . # Evaluation of f(n) #### Easy result (Elkies): $$f(n) = \begin{cases} m^2, & n = 2m + 1 \\ m(m-1), & n = 2m. \end{cases}$$ # Evaluation of f(n) #### Easy result (Elkies): $$f(n) = \begin{cases} m^2, & n = 2m + 1 \\ m(m-1), & n = 2m. \end{cases}$$ Conjecture #2 (Elkies). Let g(n) be the number of antichains of Q_n of size f(n). (E.g., g(4) = 3.) Then $$g(n) = \begin{cases} 2^{m(m-1)}, & n = 2m+1\\ 2^{(m-1)(m-2)}(2^m-1), & n = 2m. \end{cases}$$ ### Maximum size antichains P: finite poset with largest antichain of size m J(P): lattice of order ideals of P $D(P) := \{x \in J(P) : x \text{ covers } m \text{ elements} \}$ (in bijection with m-element antichains of P) ## Maximum size antichains P: finite poset with largest antichain of size m J(P): lattice of order ideals of P $D(P) := \{x \in J(P) : x \text{ covers } m \text{ elements} \}$ (in bijection with m-element antichains of P) Easy theorem (Dilworth, 1960). D(P) is a sublattice of J(P) (and hence is a distributive lattice) # Example: M_4 # **Application to Conjecture 2** Recall: g(n) is the number of antichains of Q_n of maximum size f(n). Hence $g(n) = \#D(Q_n)$. The lattice $D(Q_n)$ is difficult to work with directly, but since it is distributive it is determined by its join-irreducibles R_n . # Examples of R_n # Structure of R_n $$n = 2m + 1$$: $R_n \cong Q_{m+1} + Q_{m+1}$. Hence $$g(n) = \#J(R_n) = \left(2^{\binom{m}{2}}\right)^2 = 2^{m(m-1)},$$ proving the Conjecture 2 of Elkies for n odd. # Structure of R_n $$n = 2m + 1$$: $R_n \cong Q_{m+1} + Q_{m+1}$. Hence $$g(n) = \#J(R_n) = \left(2^{\binom{m}{2}}\right)^2 = 2^{m(m-1)},$$ proving the Conjecture 2 of Elkies for *n* odd. n=2m: more complicated. R_n consists of two copies of Q_{m+1} with an additional cover relation, but can still be analyzed. # Structure of R_n $$n = 2m + 1$$: $R_n \cong Q_{m+1} + Q_{m+1}$. Hence $$g(n) = \#J(R_n) = \left(2^{\binom{m}{2}}\right)^2 = 2^{m(m-1)},$$ proving the Conjecture 2 of Elkies for *n* odd. n=2m: more complicated. R_n consists of two copies of Q_{m+1} with an additional cover relation, but can still be analyzed. Thus Conjecture 2 is true for all n. ## The last slide ## The last slide ## The last slide Two Enumerative Tidbits - p