Two Enumerative Tidbits

Richard P. Stanley

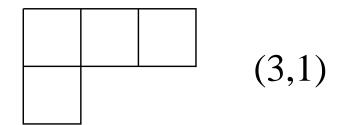
M.I.T.

The first tidbit

The Smith normal form of some matrices connected with Young diagrams

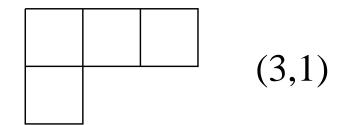
Extended Young diagrams

 λ : a partition $(\lambda_1, \lambda_2, ...)$, identified with its Young diagram



Extended Young diagrams

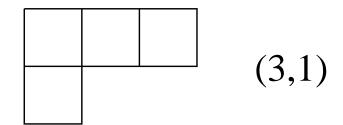
 λ : a partition $(\lambda_1, \lambda_2, ...)$, identified with its Young diagram



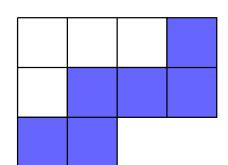
 λ^* : λ extended by a border strip along its entire boundary

Extended Young diagrams

 λ : a partition $(\lambda_1, \lambda_2, ...)$, identified with its Young diagram



 λ^* : λ extended by a border strip along its entire boundary



$$(3,1)$$
* = $(4,4,2)$

Initialization

Insert 1 into each square of λ^*/λ .

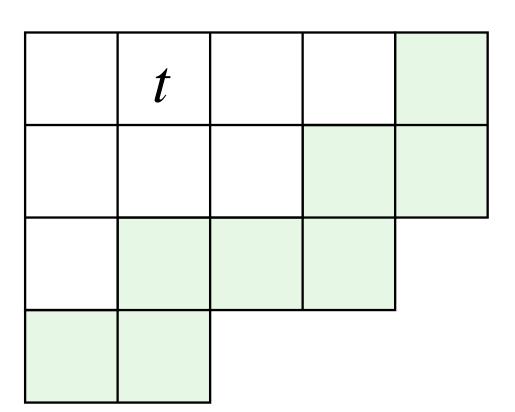
			1
	1	1	1
1	1		

$$(3,1)$$
* = $(4,4,2)$

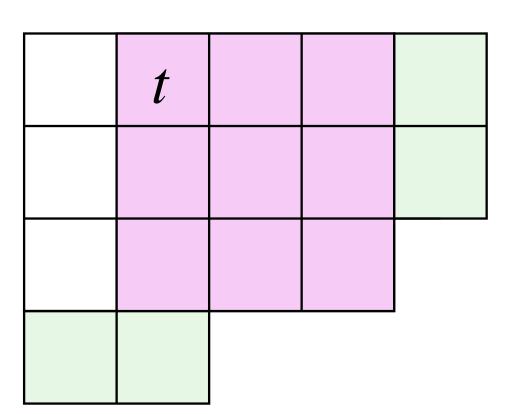
M_t

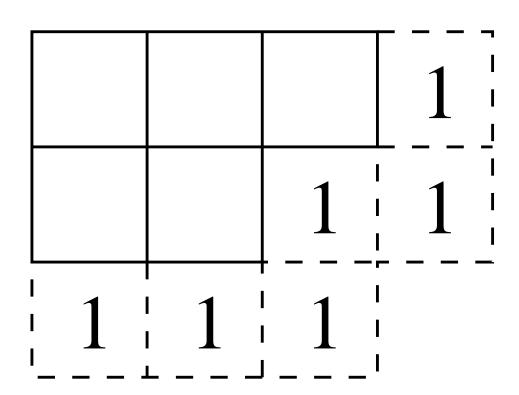
Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

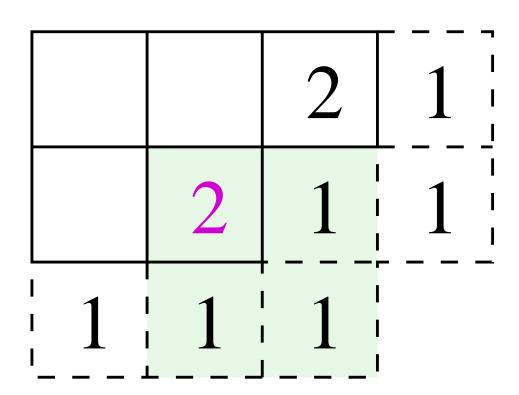


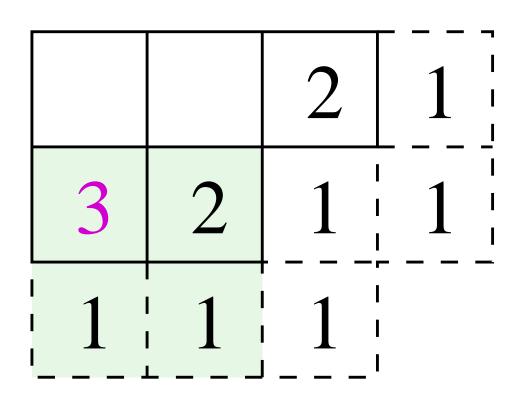
Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

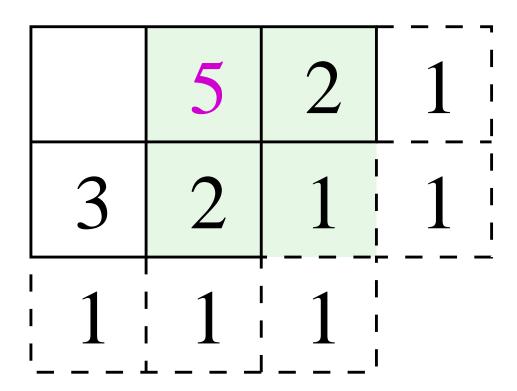


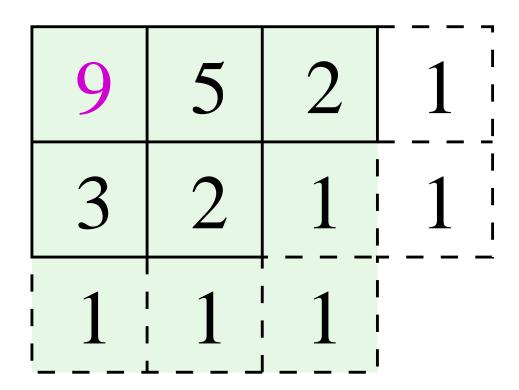












Uniqueness

Easy to see: the numbers n_t are well-defined and unique.

Uniqueness

Easy to see: the numbers n_t are well-defined and unique.

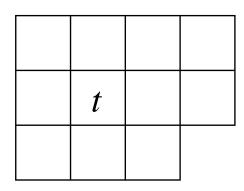
Why? Expand $\det M_t$ by the first row. The coefficient of n_t is 1 by induction.

$oldsymbol{\lambda}(t)$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$\lambda(t)$

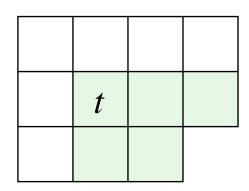
If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.



$$\lambda = (4,4,3)$$

$\lambda(t)$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.



$$\lambda = (4,4,3)$$

$$\lambda(t) = (3,2)$$

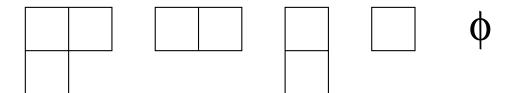
u_{λ}

$$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$

u_{λ}

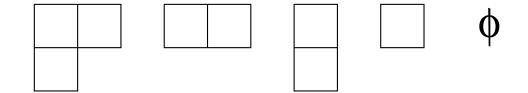
$$u_{\lambda} = \#\{\mu : \mu \subseteq \lambda\}$$

Example. $u_{(2,1)} = 5$:



$$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$

Example. $u_{(2,1)} = 5$:



There is a determinantal formula for u_{λ} , due essentially to **MacMahon** and later **Kreweras** (not needed here).

Carlitz-Scoville-Roselle theorem

- **Berlekamp** (1963) first asked for n_t (mod 2) in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Carlitz-Scoville-Roselle theorem

- **Berlekamp** (1963) first asked for n_t (mod 2) in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Theorem. $n_t = f(\lambda(t))$.

Carlitz-Scoville-Roselle theorem

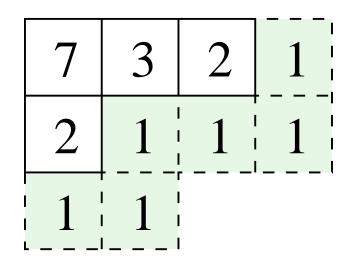
- **Berlekamp** (1963) first asked for n_t (mod 2) in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Theorem. $n_t = f(\lambda(t))$.

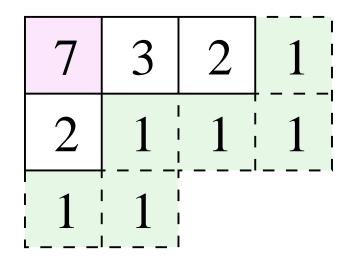
Proofs. 1. Induction (row and column operations).

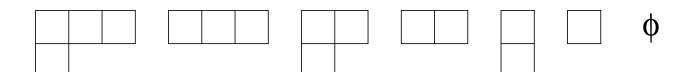
2. Nonintersecting lattice paths.

An example



An example





Smith normal form

A: $n \times n$ matrix over commutative ring **R** (with 1)

Suppose there exist $P, Q \in GL(n, R)$ such that

$$PAQ = B = diag(d_1d_2 \cdots d_n, d_1d_2 \cdots d_{n-1}, \dots, d_1),$$

where $d_i \in R$. We then call B a Smith normal form (SNF) of A.

Smith normal form

A: $n \times n$ matrix over commutative ring **R** (with 1)

Suppose there exist $P, Q \in GL(n, R)$ such that

$$PAQ = B = diag(d_1d_2 \cdots d_n, d_1d_2 \cdots d_{n-1}, \dots, d_1),$$

where $d_i \in R$. We then call B a Smith normal form (SNF) of A.

NOTE.

unit
$$\det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n$$
.

Thus SNF is a refinement of det(A).

Existence of SNF

If R is a PID, such as \mathbb{Z} or K[x] (K = field), then A has a unique SNF up to units.

Existence of SNF

If R is a PID, such as \mathbb{Z} or K[x] (K = field), then A has a unique SNF up to units.

Otherwise A "typically" does not have a SNF but may have one in special cases.

Algebraic interpretation of SNF

 \mathbf{R} : a PID

A: an $n \times n$ matrix over R with $det(A) \neq 0$ and rows $v_1, \ldots, v_n \in R^n$

 $\operatorname{diag}(e_1, e_2, \dots, e_n)$: SNF of A

Algebraic interpretation of SNF

 \mathbf{R} : a PID

A: an $n \times n$ matrix over R with $det(A) \neq 0$ and rows $v_1, \ldots, v_n \in R^n$

 $\operatorname{diag}(e_1, e_2, \dots, e_n)$: SNF of A

Theorem.

$$R^n/(v_1,\ldots,v_n)\cong (R/e_1R)\oplus\cdots\oplus (R/e_nR).$$

An explicit formula for SNF

 \mathbf{R} : a PID

A: an $n \times n$ matrix over R with $det(A) \neq 0$

 $\operatorname{diag}(e_1, e_2, \dots, e_n)$: SNF of A

An explicit formula for SNF

 \mathbf{R} : a PID

A: an $n \times n$ matrix over R with $det(A) \neq 0$

 $\operatorname{diag}(e_1, e_2, \dots, e_n)$: SNF of A

Theorem. $e_{n-i+1}e_{n-i+2}\cdots e_n$ is the gcd of all $i\times i$ minors of A.

minor: determinant of a square submatrix.

Special case: e_n is the gcd of all entries of A.

Many indeterminates

For each square $(i, j) \in \lambda$, associate an indeterminate x_{ij} (matrix coordinates).

Many indeterminates

For each square $(i, j) \in \lambda$, associate an indeterminate x_{ij} (matrix coordinates).

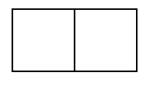
X_{11}	x_{12}	X_{13}
x_{21}	x_{22}	

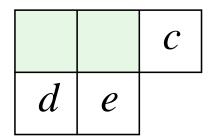
A refinement of u_{λ}

$$u_{\lambda}(x) = \sum_{\mu \subseteq \lambda} \prod_{(i,j) \in \lambda/\mu} x_{ij}$$

A refinement of u_{λ}

$$u_{\lambda}(x) = \sum_{\mu \subseteq \lambda} \prod_{(i,j) \in \lambda/\mu} x_{ij}$$





$$\lambda/\mu$$

$$\prod_{(i,j)\in\lambda/\mu} x_{ij} = cde$$

An example

a	b	C
d	e	

abcde+bcde+bce+cde +ce+de+c+e+1	bce+ce+c +e+1	c+1	1
de+e+1	e+1	1	1
1	1	1	

A_t

$$\mathbf{A_t} = \prod_{(i,j)\in\lambda(t)} x_{ij}$$

$$\mathbf{A_t} = \prod_{(i,j)\in\lambda(t)} x_{ij}$$

t_{\searrow}	1			
a	b	С	d	e
f	g	h	i	
$\int j$	k	l	m	
n	0			•

A_t

$$\mathbf{A_t} = \prod_{(i,j)\in\lambda(t)} x_{ij}$$

t_{\searrow}	7			
a	b	С	d	e
f	8	h	i	
$\int j$	k	l	m	
n	0			•

 $A_t = bcdeghiklmo$

The main theorem

Theorem. Let t=(i,j). Then M_t has SNF $\operatorname{diag}(A_{ij},A_{i-1,j-1},\ldots,1)$.

The main theorem

Theorem. Let t = (i, j). Then M_t has SNF $\operatorname{diag}(A_{ij}, A_{i-1, j-1}, \dots, 1)$.

Proof. 1. Explicit row and column operations putting M_t into SNF.

2. (C. Bessenrodt) Induction.

An example

a	b	c
d	e	

abcde+bcde+bce+cde +ce+de+c+e+1	bce+ce+c +e+1	c+1	1
de+e+1	e+1	1	1
1	1	1	

An example

a	b	c
d	e	

abcde+bcde+bce+cde +ce+de+c+e+1	bce+ce+c +e+1	c+1	1
de+e+1	e+1	1	1
1	1	1	

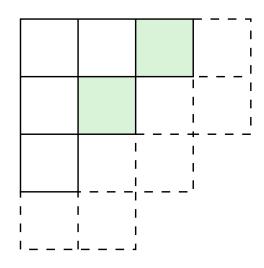
 $\mathbf{SNF} = \operatorname{diag}(abcde, e, 1)$

A special case

Let λ be the staircase $\delta_n = (n-1, n-2, \dots, 1)$. Set each $x_{ij} = q$.

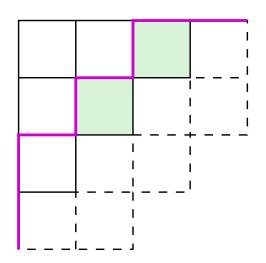
A special case

Let λ be the staircase $\delta_n = (n-1, n-2, \dots, 1)$. Set each $x_{ij} = q$.



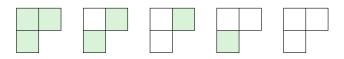
A special case

Let λ be the staircase $\delta_n = (n-1, n-2, \dots, 1)$. Set each $x_{ij} = q$.



 $u_{\delta_{n-1}}(x)\big|_{x_{ij}=q}$ counts Dyck paths of length 2n by (scaled) area, and is thus the well-known q-analogue $C_n(q)$ of the Catalan number C_n .

A q-Catalan example



$$C_3(q) = q^3 + q^2 + 2q + 1$$

A q-Catalan example

$$C_3(q) = q^3 + q^2 + 2q + 1$$

$$\begin{bmatrix} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{bmatrix} \stackrel{\text{SNF}}{\sim} \operatorname{diag}(q^6, q, 1)$$

A q-Catalan example

$$C_3(q) = q^3 + q^2 + 2q + 1$$

- q-Catalan determinant previously known
- SNF is new

The second tidbit

A distributive lattice associated with three-term arithmetic progressions

New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?

New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?

bad: 1, 2, 3, 4, 5, 6, 7, 8

New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?

bad: 1, 2, 3, 4, 5, 6, 7, 8

1, 4, 7 is a monochromatic 3-term progression

New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?

bad: 1, 2, 3, 4, 5, 6, 7, 8

1, 4, 7 is a monochromatic 3-term progression

good: 1, 2, 3, 4, 5, 6, 7, 8.

New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?

bad: 1, 2, 3, 4, 5, 6, 7, 8

1, 4, 7 is a monochromatic 3-term progression

good: 1, 2, 3, 4, 5, 6, 7, 8.

Finally proved by **Noam Elkies**.

Compatible pairs

Elkies' proof is related to the following question:

Let $1 \le i < j < k \le n$ and $1 \le a < b < c \le n$.

 $\{i,j,k\}$ and $\{a,b,c\}$ are **compatible** if there exist integers $x_1 < x_2 < \cdots < x_n$ such that x_i, x_j, x_k is an arithmetic progression and x_a, x_b, x_c is an arithmetic progression.

An example

Example. $\{1,2,3\}$ and $\{1,2,4\}$ are *not* compatible. Similarly 124 and 134 are *not* compatible.

An example

Example. $\{1,2,3\}$ and $\{1,2,4\}$ are *not* compatible. Similarly 124 and 134 are *not* compatible.

123 and 134 are compatible, e.g.,

$$(x_1, x_2, x_3, x_4) = (1, 2, 3, 5).$$

Elkies' question

What subsets $\mathcal{S} \subseteq \binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible?

Elkies' question

What subsets $\mathcal{S} \subseteq \binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible?

Example. When n = 4 there are eight such subsets S:

$$\emptyset$$
, $\{123\}$, $\{124\}$, $\{134\}$, $\{234\}$, $\{123, 134\}$, $\{123, 234\}$, $\{124, 234\}$.

Not $\{123, 124\}$, for instance.

Elkies' question

What subsets $\mathcal{S} \subseteq \binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible?

Example. When n=4 there are eight such subsets S:

$$\emptyset$$
, $\{123\}$, $\{124\}$, $\{134\}$, $\{234\}$, $\{123, 134\}$, $\{123, 234\}$, $\{124, 234\}$.

Not $\{123, 124\}$, for instance.

Let M_n be the collection of all such $S \subseteq {[n] \choose 3}$, so for instance $\#M_4 = 8$.

Another example

Example. For n=5 one example is

$$\mathcal{S} = \{123, 234, 345, 135\} \in M_5,$$

achieved by 1 < 2 < 3 < 4 < 5.

Conjecture of Elkies

Conjecture.
$$\#M_n = 2^{\binom{n-1}{2}}$$
.

Conjecture of Elkies

Conjecture. $\#M_n = 2^{\binom{n-1}{2}}$.

Proof (with Fu Liu).

Conjecture of Elkies

Conjecture. $\#M_n = 2^{\binom{n-1}{2}}$.

Proof (with Fu Liu 刘拂).

A poset on M_n

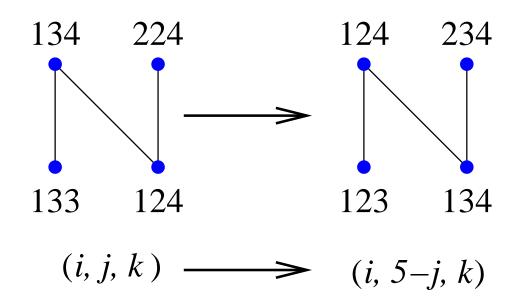
Jim Propp: Let Q_n be the subposet of $[n] \times [n] \times [n]$ (ordered componentwise) defined by

$$\mathbf{Q_n} = \{(i, j, k) : i + j < n + 1 < j + k\}.$$

antichain: a subset A of a poset such that if $x, y \in A$ and $x \leq y$, then x = y

There is a simple bijection from the antichains of Q_n to M_n induced by $(i, j, k) \mapsto (i, n + 1 - j, k)$.

The case n=4



antichains:

$$\emptyset$$
, $\{123\}$, $\{124\}$, $\{134\}$, $\{234\}$, $\{123, 134\}$, $\{123, 234\}$, $\{124, 234\}$.

Order ideals

order ideal: a subset I of a poset such that if $y \in I$ and $x \leq y$, then $x \in I$

There is a bijection between antichains A of a poset P and order ideals I of P, namely, A is the set of maximal elements of I.

Order ideals

order ideal: a subset I of a poset such that if $y \in I$ and $x \leq y$, then $x \in I$

There is a bijection between antichains A of a poset P and order ideals I of P, namely, A is the set of maximal elements of I.

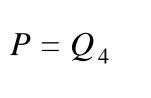
J(P): set of order ideals of P, ordered by inclusion (a distributive lattice)

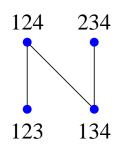
Join-irreducibles

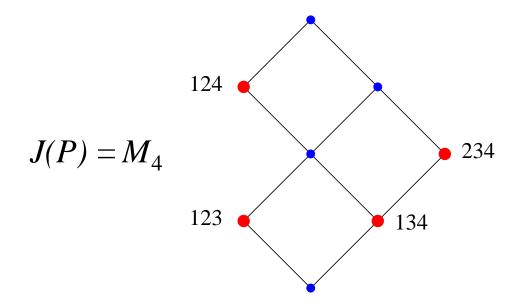
join-irreducible of a finite lattice L: an element y such that exactly one element x is maximal with respect to x < y (i.e., y covers x)

Theorem (FTFDL). If L is a finite distributive lattice with the subposet P of join-irreducibles, then $L \cong J(P)$.

The case n=4







A partial order on M_n

Recall: there is a simple bijection from the antichains of Q_n to M_n induced by $(i, j, k) \mapsto (i, n + 1 - j, k)$.

Also a simple bijection from antichains of a finite poset to order ideals.

A partial order on M_n

Recall: there is a simple bijection from the antichains of Q_n to M_n induced by $(i, j, k) \mapsto (i, n + 1 - j, k)$.

Also a simple bijection from antichains of a finite poset to order ideals.

Hence we get a bijection $J(Q_n) \to M_n$ that induces a distributive lattice structure on M_n .

Semistandard tableaux

T: semistandard Young tableau of shape of shape $\boldsymbol{\delta_{n-1}} = (n-2, n-3, \dots, 1)$, maximum part < n-1

1	1	2	5
2	3	3	
4	4		
5			

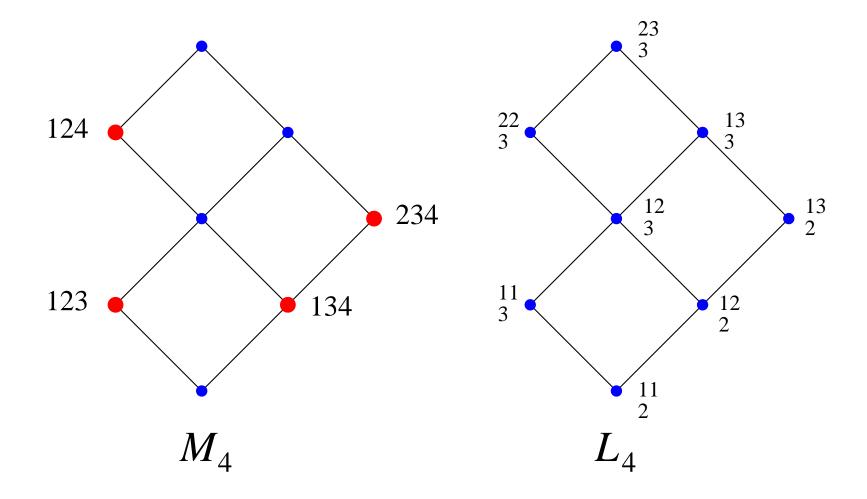
Semistandard tableaux

T: semistandard Young tableau of shape of shape $\boldsymbol{\delta_{n-1}} = (n-2, n-3, \dots, 1)$, maximum part < n-1

1	1	2	5
2	3	3	
4	4		
5		•	

 L_n : poset of all such T, ordered componentwise (a distributive lattice)

L_4 and M_4 compared



$\boldsymbol{L_n}\cong \boldsymbol{M_n}$

Theorem. $L_n \cong M_n \ (\cong J(Q_n))$.

$\boldsymbol{L_n}\cong \boldsymbol{M_n}$

Theorem. $L_n \cong M_n \ (\cong J(Q_n)).$

Proof. Show that the poset of join-irreducibles of L_n is isomorphic to Q_n . \square

 $\#L_n$

Theorem. $\#L_n = 2^{\binom{n-1}{2}}$ (proving the conjecture of Elkies).

$\#L_n$

Theorem. $\#L_n = 2^{\binom{n-1}{2}}$ (proving the conjecture of Elkies).

Proof.
$$\#L_n = s_{\delta_{n-2}}(\underbrace{1, 1, ..., 1})$$
. Now use

hook-content formula.

$$\#L_n$$

Theorem. $\#L_n = 2^{\binom{n-1}{2}}$ (proving the conjecture of Elkies).

Proof.
$$\#L_n = s_{\delta_{n-2}}(\underbrace{1,1,\ldots,1}_{n-1})$$
. Now use

hook-content formula.

In fact,

$$s_{\delta_{n-2}}(x_1, \dots, x_{n-1}) = \prod_{1 \le i < j \le n-1} (x_i + x_j).$$

Maximum size elements of M_n

f(n): size of largest element S of M_n .

Maximum size elements of M_n

f(n): size of largest element S of M_n .

Example. Recall

$$M_4 = \{\emptyset, \{123\}, \{124\}, \{134\}, \{234\}, \{123, 134\}, \{123, 234\}, \{124, 234\}\}.$$

Thus f(4) = 2.

Maximum size elements of M_n

f(n): size of largest element S of M_n .

Example. Recall

$$M_4 = \{\emptyset, \{123\}, \{124\}, \{134\}, \{234\}, \{123, 134\}, \{123, 234\}, \{124, 234\}\}.$$

Thus f(4) = 2.

Since elements of M_n are the antichains of Q_n , f(n) is also the number of maximum size antichains of Q_n .

Evaluation of f(n)

Easy result (Elkies):

$$f(n) = \begin{cases} m^2, & n = 2m + 1 \\ m(m-1), & n = 2m. \end{cases}$$

Evaluation of f(n)

Easy result (Elkies):

$$f(n) = \begin{cases} m^2, & n = 2m + 1 \\ m(m-1), & n = 2m. \end{cases}$$

Conjecture #2 (Elkies). Let g(n) be the number of antichains of Q_n of size f(n). (E.g., g(4) = 3.) Then

$$g(n) = \begin{cases} 2^{m(m-1)}, & n = 2m+1\\ 2^{(m-1)(m-2)}(2^m-1), & n = 2m. \end{cases}$$

Maximum size antichains

P: finite poset with largest antichain of size m

J(P): lattice of order ideals of P

 $D(P) := \{x \in J(P) : x \text{ covers } m \text{ elements} \}$ (in bijection with m-element antichains of P)

Maximum size antichains

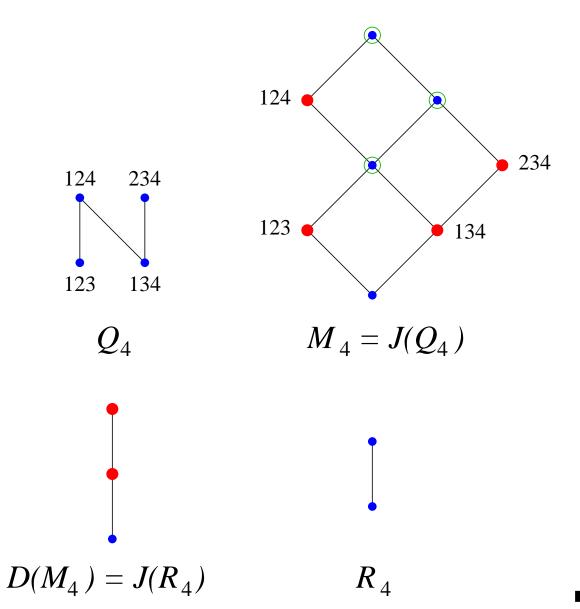
P: finite poset with largest antichain of size m

J(P): lattice of order ideals of P

 $D(P) := \{x \in J(P) : x \text{ covers } m \text{ elements} \}$ (in bijection with m-element antichains of P)

Easy theorem (Dilworth, 1960). D(P) is a sublattice of J(P) (and hence is a distributive lattice)

Example: M_4

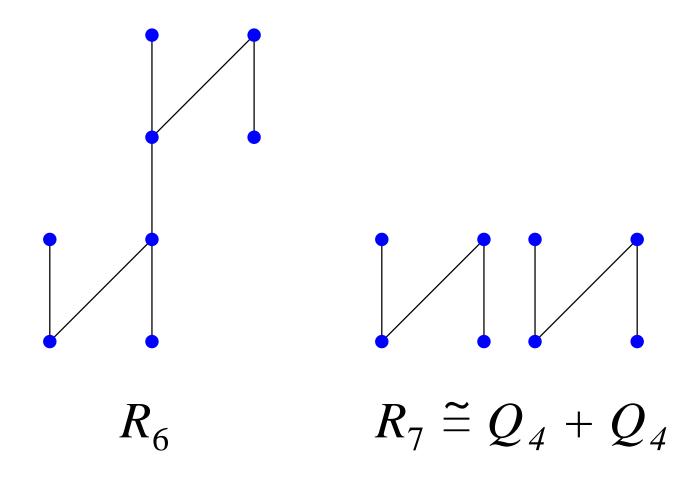


Application to Conjecture 2

Recall: g(n) is the number of antichains of Q_n of maximum size f(n).

Hence $g(n) = \#D(Q_n)$. The lattice $D(Q_n)$ is difficult to work with directly, but since it is distributive it is determined by its join-irreducibles R_n .

Examples of R_n



Structure of R_n

$$n = 2m + 1$$
: $R_n \cong Q_{m+1} + Q_{m+1}$. Hence

$$g(n) = \#J(R_n) = \left(2^{\binom{m}{2}}\right)^2 = 2^{m(m-1)},$$

proving the Conjecture 2 of Elkies for n odd.

Structure of R_n

$$n = 2m + 1$$
: $R_n \cong Q_{m+1} + Q_{m+1}$. Hence

$$g(n) = \#J(R_n) = \left(2^{\binom{m}{2}}\right)^2 = 2^{m(m-1)},$$

proving the Conjecture 2 of Elkies for *n* odd.

n=2m: more complicated. R_n consists of two copies of Q_{m+1} with an additional cover relation, but can still be analyzed.

Structure of R_n

$$n = 2m + 1$$
: $R_n \cong Q_{m+1} + Q_{m+1}$. Hence

$$g(n) = \#J(R_n) = \left(2^{\binom{m}{2}}\right)^2 = 2^{m(m-1)},$$

proving the Conjecture 2 of Elkies for *n* odd.

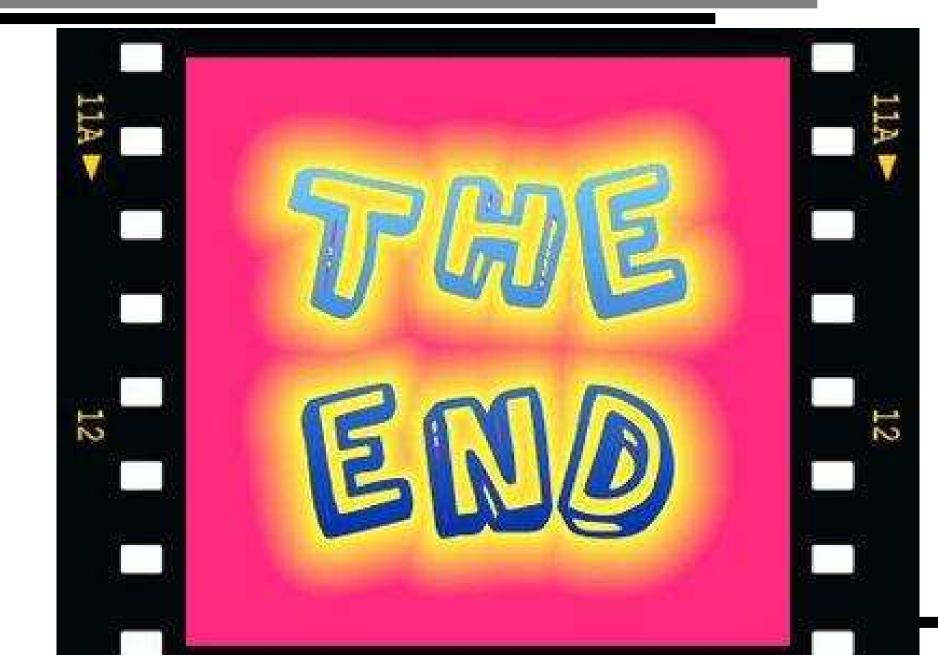
n=2m: more complicated. R_n consists of two copies of Q_{m+1} with an additional cover relation, but can still be analyzed.

Thus Conjecture 2 is true for all n.

The last slide

The last slide

The last slide



Two Enumerative Tidbits - p