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Γ: a finite digraph with v vertices
AΓ: the adjacency matrix of Γ
RΓ: the subring of Mv×v(Z) generated by AΓ, i.e.,
RΓ = {f(AΓ) | f(x) ∈ Z[x]}
L: an RΓ-module, e.g., RΓ, Zv

Questions

(1) How many submodules of L with given index
are there?
(2) Find the class number h(L), i.e., the number
of isomorphism classes of submodules of L with
finite index.

Example 1

Γ: the null graph
RΓ = Z
L = Zm

How many Z-submodules of Z2 with index two are
there?

You will see that {(2a, b) | a, b ∈ Z} and
{(a,2b) | a, b ∈ Z} are submodules of index two.

What else?
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The number of Z-submodules of Zm with index n

is equal to the number of integral lower triangular

matrices (bij)1≤i,j≤m such that

0 ≤ bij < bjj for all i, j and b11b22 · · · bmm = n.

For example, if m = n = 2, then the matrices are(
2 0
0 1

)
,

(
1 0
0 2

)
,

(
1 1
0 2

)
.

Therefore,

Z(2,0) + Z(0,1),

Z(1,0) + Z(0,2) and

Z(1,1) +Z(0,2) are the submodules of index two.

Class number

Since every submodule of Zm with finite index is

a free Z-module of rank m, h(Zm) = 1.
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Example 2

Γ: the path of length one

AΓ =

(
0 1
1 0

)
, RΓ =

{(
a b
b a

)
| a, b ∈ Z

}
L = Z2

L has exactly one submodule of index 2,

which is M = {(x, y) ∈ Z2 | x ≡ y (mod 2)}.
L has exactly two submodules of index 3, and

L has exactly three submodules of index 4.

Class number

Since M has exactly three submodules of index

two, we have M 6' L, and we can prove that

h(L) = 2.

Example 3

Γ: the directed cycle of length 3

AΓ =

0 1 0
0 0 1
1 0 0

, RΓ =


a b c
c a b
b c a

 | a, b, c ∈ Z


L = RΓ

L has exactly two submodules of index 2,

L has exactly one submodule of index 3, and

L has exactly three submodules of index 4.
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Works by Louis Solomon

L. Solomon,

Zeta functions and integral representation theory,

Advances in Math. 26 (1977), no. 3, 306–326.

A: a f.d. semisimple Q-algebra

R: a Z-order of A, (a subring of A, a Z-lattice)

V : a f.g. A-module

L: an R-lattice in V (an R–module, Z-lattice)

For n ∈ Z+ we denote by an the number of sub-

modules of L with index n.

ζL(s) :=
∑
n≥1

an

ns
=

∏
p∈B

δp(p
−s) · ζV (s)

for some δp(t) ∈ Q(t) where B is a finite set of

primes and

ζV (s) =
∏r
k=1

∏mkek−1
j=0 ζFk(nks− j)

when A '
⊕r
k=1Ak, Ak 'Mlk

(Dk)

Fk = Z(Ak), n2
k = dimFk

Ak, ek = dimFk
Dk

V '
⊕r
k=1mkWk,

ζFk(s) is the Dedekind zeta function of Fk.
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Example 1

A = Q
R = Z
V = Qm

L = Zm

ζL(s) = ζ(s)ζ(s− 1) · · · ζ(s−m+ 1)

where ζ(s) is the Riemann zeta function, i.e.,

ζ(s) = 1
1s + 1

2s + 1
3s + · · · .

If m = 2, then a2 = 3, a3 = 4 and a4 = 7 since

ζ(s)ζ(s−1) = (
1

1s
+

1

2s
+

1

3s
+· · · )(

1

1s
+

2

2s
+

3

3s
+· · · )

=
1

1s
+(2+1)

1

2s
+(3+1)

1

3s
+(4+2+1)

1

4s
+ · · · .
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Example 2
Γ: the path of length 2, R = RΓ, L = Z2

ζL(s) = (1− 2−s + 21−2s)ζ(s)ζ(s)

= (1−
1

2s
+

2

4s
)(

1

1s
+

1

2s
+

1

3s
+· · · )(

1

1s
+

1

2s
+

1

3s
+· · · )

How many submodules with index 2?

Known Results
G: a finite group
A = Q[G]: the group ring of G over Q
R = Z[G]: a Z-order of Q[G]
V = A, L = R

[L.Solomon]
If G ' Cp, then
ζL(s) = (1− p−s + p1−2s)ζ(s)ζF (s)

where F = Q(e
2πi
p ) and p is a prime.

[I.Reiner]
G ' Cp2

[Y.Hironaka]
G is meta-cyclic with certain conditions

[Y.Takegahara]
G ' C2 × C2 or C3 × C3.
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Attempts for Several Digraphs

In this slide we consider zeta functions of L = RΓ

for several digraphs Γ.

(1) Γ: the direct cycle of length N

RΓ ' Z[CN ] where CN ' 〈(12 · · ·N)〉.

(2) Γ: the cycle of length N

It is difficult to compute the zeta function of RΓ

even if N = 4. But, it is possible whenever N is

a prime. [H, Hanaki]

(3) Γ = Cay(Fq, H) where H ≤ F×q
It is difficult to compute the zeta function of RΓ

even if q = 4. But, it is possible whenever q is a

prime. [H, Hanaki]

(4) Γ: the complete graph of degree N

We can find it for each N . [H, Hanaki]
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Theorem 1

Let (X,S) be an association scheme such that |X|
is a prime p. Then

ζZS(s) = (1− p−s + p1−2s)ζ(s)ζF (s)

where F is the minimal splitting field of a non-

principal character of CS.

Theorem 2

Let (X,S) be an association scheme such that

|S| = 2 and |X| =
∏k
i=1 pi

mi. Then

ζZS(s) =
k∏
i=1

δpi,mi(pi
−s) · ζ(s)2

where δpi,mi(t) = pi
mit2mi +

∑mi−1
j=0 pi

jt2j(1− t).

Remarks

(1) If Γ = Cay(Fp, H) with H ≤ F×p , then RΓ = ZS.

(2) If Γ = K|X|, then RΓ = ZS with |S| = 2.

9



What is an association scheme?

A set S of N ×N {0,1}-matrices {A0, A1, . . . , Ad}
such that

(i)
∑d
i=0Ai = J where J is the all one matrix;

(ii) A0 is the identity matrix;

(iii) {AT0 , A
T
1 , . . . , A

T
d } = {A0, A1, . . . , Ad};

(iv) ∀i, j, AiAj ∈ spanZ{A0, A1, . . . , Ad}.

Examples

(i)


1 0 0

0 1 0
0 0 1

 ,
0 1 0

0 0 1
1 0 0

 ,
0 0 1

1 0 0
0 1 0




(ii)


1 0 0

0 1 0
0 0 1

 ,
0 1 1

1 0 1
1 1 0




(iii) The centralizer ring of a transitive permuta-

tion group has a unique basis consisting of {0,1}-
matrices, which satisfies the above conditions.

Definition (Adjacency Algebras)

spanZ{A0, A1, . . . , Ad} is a Z-algebra,

denoted by ZS.

For a ring R we denote R
⊗

ZS by RS,

called the adjacency algebra of S over R.
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Sketch of the proof of Theorem 1

Let (X,S) be an association scheme such that |X|
is a prime p.

Recall that

ζL(s) =
∏
q∈B

δq(q
−s) · ζV (s).

It is known that QS ' Q
⊕
F

where F is the minimal splitting field of CS.

Thus, ζV (s) = ζ(s) · ζF (s).

Lemma 1 We have B = {p}.
(Proof) Let y ∈ Λ.

Then y =
∑d
i=0 ciAi for c0, c1, . . . , cd ∈ Q.

Note that ci = ρ(y)/(ni|X|) where

ni is the constant rowsum of Ai and

ρ is the standard character.

Since χ0 =
∑d
i=0miχi, m0 = n0 = 1 and

n1 = n2 = · · · = nd = m1 = m2 = · · · = md, we

have py ∈ ZS. This implies that p is a unique

prime which divides |Λ : ZS|.
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Lemma 2 [Solomon]

δp(p
−s) =

ζZpS(s;ZpS)

ζQS(s)p

where Zp is the localization of Z at p.

Lemma 3

ζQS(s)p = ζ(s)pζF (s)p = (1 + p−s + p−2s + · · · )2.

(Proof) Let R be the ring of integers of F . It is

known ([Hanaki]) that there exists a unique max-

imal ideal I which divides pR, and |R : I| = p.

Thus, the assertion follows from the definition of

the Dedekind zeta function.

12



Lemma 4 We have the following:

(1) ZpS has exactly one maximal submodule M ;

(2) M has exactly (p + 1) maximal submodules,

two of which are isomorphic to M and

p− 1 of which are isomorphic to ZpS.

(Proof)

(1) follows from the fact that (Zp/pZp)S is local.

(2) First, we prove that

M has a Zp-basis (u, v, v2, . . . , vd) where

u =
∑d
i=0Ai and v = kA0 −Ai for a suitable Ai,

Then we can prove that {Na | a = 0,1, . . . , p,∞}
are exactly maximal submodules of M where Na

is spanned by (pu, au+v, v2, . . . , vd) for a 6=∞ and

N∞ is spanned by (u, pv, v2, . . . , vd).

Moreover, N0 ' N∞ 'M .

Lemma 5

We have δp(X) = 1−X + pX2.

(Proof) The structure of the poset of submodules

of ZpS is the same as Zp[G] where G is a group

of order p. So, the assertion follows from the

method given in [Solomon].
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Other digraphs

(1) Γ: The directed path of length N

Then Q ⊗ RΓ is not semisimple and h(RΓ) is not

finite.

(2) Γ: the cycle of length 4

It is expected that h(RΓ) = 10

(joint work with Semin Oh).

(3) Γ: a strongly-regular graph with integral eigen-

values, e.g., the Peterson graph.

Q⊗RΓ ' Q⊕ Q⊕ Q

(4) Γ: the path of length N

(5) Γ: the star graph with N leaves.
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Thank you for your attention.
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