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Part 1

Jacobi-Stirling numbers
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Introduction

Jacobi polynomials P
(α,β)
n (t) satisfy the differential equation :

(1−t2)y ′′(t)+(β−α−(α+β+2)t)y ′(t)+n(n+α+β+1)y(t) = 0.

Let `α,β[y ](t) be the differential operator of Jacobi :

`α,β[y ](t) =
1

(1− t)α(1 + t)β

(
−(1− t)α+1(1 + t)β+1y ′(t)

)′
Then P

(α,β)
n (t) is an eigenfunction of `α,β[y ](t) :

`α,β[y ](t) = n(n + α + β + 1)y(t)
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Introduction

Everitt-Kwon-Littlejohn-Wellman-Yoon (2007) proved the
expansion of the n-th composition of `α,β :

(1− t)α(1 + t)β`nα,β [y ](t) =
n∑

k=0

(−1)k
(
JS(n, k;α + β + 1)(1− t)α+k (1 + t)β+k y (k)(t)

)(k)
,

where JS(n, k ; z) are called the Jacobi-Stirling numbers of the
second kind defined by

X n =
n∑

k=0

JS(n, k; z)
k−1∏
i=0

(X − i(z + i)).
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Jacobi-Stirling numbers

Equivalently these numbers can be defined by the recurrence :

JS(n, k ; z) = JS(n−1, k−1; z)+k(k+z) JS(n−1, k ; z), n, k ≥ 1,

JS(0, 0; z) = 1, JS(n, k ; z) = 0 if k 6∈ {1, . . . , n}.

When z = 1, LS(n, k) := JS(n, k; 1) are called Legendre-Stirling
numbers.
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Jacobi-Stirling numbers

k\n 0 1 2 3 4

0 1 0 0 0 0

1 1 1 + z 1 + 2z + z2 1 + 3z + 3z2 + z3

2 1 5 + 3z 21 + 24z + 7z2

3 1 14 + 6z

4 1
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Recall : Stirling numbers of second kind

The Stirling numbers (of second kind) S(n, k) are defined by
the relation :

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

They count :
partitions of [n] := {1, 2, . . . , n} into k blocks,
For example,

π =
{
{1, 3, 6}, {2, 5}, {4}

}
is a partition of [6] in 3 blocks.
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Central factorial numbers

The central factorial numbers (of second kind) U(n, k) are
defined by relation :

U(n, k) = U(n − 1, k − 1) + k2U(n − 1, k).

They count (Dumont, 1974) :

the pairs (π1, π2) of partitions of [n] into k blocks, with
min(π1) = min(π2),

the number of partitions of {1, 1′, 2, 2′, . . . , n, n′} in k blocks
such that, for each block B, if i is the smallest integer with
i ∈ B or i ′ ∈ B, then both i and i ′ are in B.
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Example

For example, for the two partitions of [6] in 3 blocks,

π1 =
{
{1, 6}, {2, 3, 5}, {4}

}
, π2 =

{
{1, 5}, {2, 3}, {4, 6}

}
,

we have min(π1) = min(π2) = {1, 2, 4}.
It corresponds to the partition π of {1, 1′, 2, 2′, . . . , 6, 6′} into 3
blocks,

π =
{
{1, 1′, 5′, 6}, {2, 2′, 3, 3′, 5}, {4, 4′, 6′}

}
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Jacobi-Stirling numbers

Jacobi-Stirling numbers :

JS(n, k ; z) = JS(n−1, k−1; z) + k(k+z) JS(n−1, k ; z), n, k ≥ 1.

=⇒ JS(n, k; z) is a polynomial in z of degree n − k :

JS(n, k ; z) = a
(0)
n,k + a

(1)
n,kz + · · ·+ a

(n−k)
n,k zn−k .

Moreover,
a
(n−k)
n,k = S(n, k),

a
(0)
n,k = U(n, k).
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Legendre-Stirling numbers

Definition (Andrews-Littlejohn, 2009)

A signed k-partition of [±n]0 = {0,±1,±2, . . . ,±n} is a partition
of [±n]0 into k + 1 blocks B0,B1, . . . ,Bk , such that

0 ∈ B0 and ∀i ∈ [n], {i ,−i} 6⊂ B0,

∀j ∈ [k], i is the smallest integer > 0 such that i ∈ Bj or
−i ∈ Bj⇔{i ,−i} ⊂ Bj .

For example,

π =
{
{0, 2,−5,−6}, {±1,−2, 6}, {±3}, {±4, 5}

}
is a signed 3-partition of [±6]0.

Theorem (Andrews-Littlejohn, 2009)

The Legendre-Stirling number LS(n, k) is the number of signed
k-partitions of [±n]0.
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Jacobi-Stirling numbers

Theorem (Gelineau-Z., 2009)

The coefficient a
(i)
n,k is equal to the number of signed k-partitions

of [±n]0 with i negative numbers in B0.

Proof : Since JS(n, k ; z) satisfy the recurrence relation :

JS(n, k ; z) = JS(n − 1, k − 1; z) + k(k + z) JS(n − 1, k ; z),

it suffices to verify that the numbers satisfy the same recurrence:
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Jacobi-Stirling numbers

Theorem (Gelineau-Z., 2009)

The coefficient a
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a
(i)
n,k = a

(i)
n−1,k−1︸ ︷︷ ︸
Bk={±n}

+ ka
(i−1)
n−1,k︸ ︷︷ ︸
−n∈B0

+ k2a
(i)
n−1,k︸ ︷︷ ︸

otherwise

.
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Jacobi-Stirling numbers

a
(i)
n,k = ]{signed k- partitions [±n]0 with i terms < 0 inB0}

⇒ For i = n − k , we recover the interpretation of S(n, k).

π =
{
{0,−3,−5,−6}, {±1, 3, 6}, {±2, 5}, {±4}

}
⇓

π′ =
{
{1, 3, 6}, {2, 5}, {4}

}
⇒ For i = 0, we recover the interpretation of U(n, k).

π =
{
{0, 3, 6}, {±1,−3}, {±2,−5}, {±4, 5,−6}

}
⇓

π = {{±1,±3}, {±2,−5}, {±4, 5,±6}}.
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Jacobi-Stirling numbers
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Jacobi-Stirling numbers of first kind

The Jacobi-Stirling numbers of first kind js(n, k; z) are defined
by reversing the connection relation for JS(n, k ; z) :

X n =
n∑

k=0

JS(n, k; z)
k−1∏
i=0

(X − i(z + i)),

n−1∏
i=0

(X − i(z + i)) =
n∑

k=0

(−1)n−k js(n, k ; z)X k .

These numbers satisfy then the recurrence relation :

js(n, k; z) = js(n − 1, k − 1; z) + (n − 1)(n − 1 + z) js(n − 1, k ; z).

Jiang Zeng Jacobi-Stirling numbers and Jacobi-Stirling permutations



Jacobi-Stirling numbers of first kind

The Jacobi-Stirling numbers of first kind js(n, k; z) are defined
by reversing the connection relation for JS(n, k ; z) :

X n =
n∑

k=0

JS(n, k; z)
k−1∏
i=0

(X − i(z + i)),

n−1∏
i=0

(X − i(z + i)) =
n∑

k=0

(−1)n−k js(n, k ; z)X k .

These numbers satisfy then the recurrence relation :

js(n, k; z) = js(n − 1, k − 1; z) + (n − 1)(n − 1 + z) js(n − 1, k ; z).

Jiang Zeng Jacobi-Stirling numbers and Jacobi-Stirling permutations



k\n 0 1 2 3 4

0 1 0 0 0 0

1 1 z + 1 2z2 + 6z + 4 6z3 + 36z2 + 66z + 36

2 1 3z + 5 11z2 + 48z + 49

3 1 6z + 14

4 1
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The Stirling numbers (of first kind) s(n, k) :

s(n, k) = s(n − 1, k − 1) + (n − 1)s(n − 1, k).

The central factorial numbers (of first kind) u(n, k) :

u(n, k) = u(n − 1, k − 1) + (n − 1)2u(n − 1, k).

s(n, k) counts the number of permutations of [n] with k cycles.
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Theorem

js(n, k; z) is a polynomial in z with degree n − k :

js(n, k ; z) = b
(0)
n,k + b

(1)
n,kz + · · ·+ b

(n−k)
n,k zn−k .

Moreover,
b
(n−k)
n,k = s(n, k),

b
(0)
n,k = u(n, k).
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Combinatorial interpretations

Let Σ(n, k) := all (σ, τ) such that

σ is a permutation of {0, 1, . . . , n}, τ is a permutation of
{1, . . . , n}, and both have k cycles.

1 and 0 are in the same cycle in σ.

Among their nonzero entries, σ and τ have the same cyclic
minima.

Theorem (Gelineau-Z., 2009)

js(n, k; z) is the enumerative polynomial in z for Σ(n, k) with
respect to the number of non-zero left-to-right minima in the cycle
containing 0 in σ, written as a word beginning with σ(0)σ2(0) . . ..
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Part 2

Jacobi-Stirling posets and
permutations
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Diagonal generating functions

For fixed k, consider the Diagonal sequence of Jacobi-Stirling
numbers {JS(n + k , n; z)}n≥0:

JS(n + k, n; z) = pk,0(n) + pk,1(n)z + · · ·+ pk,k(n)zk

Theorem (G-L-Z)

There is a polynomial Ak,i (t) ∈ N[t] of degree 2k − i , with
Ak,i (0) = 0 such that

∑
n≥0

pk,i (n)tn =
Ak,i (t)

(1− t)3k−i+1

Problem: What do the coefficients of Ak,i mean?
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First values

k\i 0 1 2

0
1

1− t

1
t + t2

(1− t)4
t

(1− t)3

2
t + 14t2 + 21t3 + 4t4

(1− t)7
2t + 12t2 + 6t3

(1− t)6
t + 2t2

(1− t)5
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Stanley’s P-partition theory

Let P be a poset on [k] with partial order ≺. A P-partition is a
function f : [k]→ N such that

(i) if i ≺ j then f (i) ≤ f (j)

(ii) if i ≺ j and i > j then f (i) < f (j).

Example
Consider the following poset:

v
2
@

@@
v1

�
��

v3

We have 2 ≺ 3 and 2 ≺ 1 and 2 > 1. Hence a P-partition of the
poset is a function f satisfies f (2) ≤ f (3) and f (2) < f (1).
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Stanley’s P-partition theory

A linear extension of a poset P is an extension of P to a total
order. Denote by L (P) the set of all linear extensions of P.
Example
For the following poset

v
2
@

@@
v1

�
��

v3

we have L (P) = {213, 231}.
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Stanley’s P-partition theory

The P-partitions of a poset P can be refined by the linear
extensions of P.

Lemma

Let A (P) be the set of all P-partitions of a poset P. We have the
disjoint union

A (P) =
∐

π∈L (P)

A (π).

(Sketch of the proof) This can be proved by induction on the
number of incomparable pairs in P.
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Stanley’s P-partition theory

The order polynomial ΩP(n) is the number of P-partitions of a
poset P with all parts in [n].
Example
1. We have ΩP(n) = 2

(n+1
3

)
for the following poset.

v
2
@

@@
v1

�
��

v3

2. If P is the antichain on [k] then ΩP(n) = nk .
3. If P is the (natural ordered) chain on [k] then
ΩP(n) = the number of k-multisets on [n] =

(n+k−1
k

)
.
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(n+k−1
k

)
.
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Stanley’s P-partition theory

Theorem (P-partition theory)

Let P be a poset on [k]. Then we have

∑
n≥0

ΩP(n)tn =

∑
π∈L (P) t

des(π)+1

(1− t)k+1
.

(Sketch of proof) By the Lemma, it is enough to consider the case
in which P is a chain on [k] and reduce to the binomial theorem:∑

n≥0

(
n + k − 1

k

)
tn =

t

(1− t)k+1
.
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Antichain, Permutations

Example 1 (Antichain)
If P is the antichain on [k], we have

∑
n≥0

nktn =

∑k
i=1 A(k, i)t i

(1− t)k+1
,

where the Eulerian number A(k , i) counts the number of
permutations of [k] with i − 1 descents.
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Stirling poset

Example 2 (Stirling poset, Park 1994)
Consider the above poset on [2k], we have

ΩP(n) =
∑

1≤f (2)≤···≤f (2k)≤n

f (2)f (4) · · · f (2k)

= [tk ]
1

(1− t)(1− 2t) · · · (1− nt)

= S(n + k , n).
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Stirling permutations

Theorem (Park, 1994)∑
n≥0

S(n + k , n)tn =

∑k
j=1 ck,j t

j

(1− t)2k+1
,

where ck,j counts the linear extensions of Stirling poset with j − 1
descents.

Stirling permutation: a permutation of {1, 1, 2, 2, . . . , n, n} such
that, for each i , 1 ≤ i ≤ n, the elements occurring between two
occurrences of i are at least i .
Example
2211, 1221, 1122 are all the Stirling permutations of {1, 1, 2, 2}.

Theorem (Gessel and Stanley, 1978)

The integer ck,j counts the number of Stirling permutations of
{1, 1, 2, 2, . . . , k, k} with j − 1 descents.
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Stirling permutations

Theorem (Park, 1994)∑
n≥0

S(n + k , n)tn =
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that, for each i , 1 ≤ i ≤ n, the elements occurring between two
occurrences of i are at least i .
Example
2211, 1221, 1122 are all the Stirling permutations of {1, 1, 2, 2}.

Theorem (Gessel and Stanley, 1978)
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{1, 1, 2, 2, . . . , k, k} with j − 1 descents.
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Central factorial poset

Example 4 (Central factorial poset) We have

∞∑
n=0

U(n, k)xn =
xk

(1− 12x)(1− 22x) · · · (1− k2x)
,

so that
∞∑
n=0

U(n + k , k)xn =
1

(1− 12x)(1− 22x) · · · (1− k2x)
.

By the same kind of reasoning for Stirling posets, we see that
ΩP(n) = U(n + k , n).
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Central factorial permutations

Theorem

∑
n≥0

U(n + k , n)tn =

∑2k
j=1 dk,j t

j

(1− t)3k+1
,

where dk,j is the number of linear extensions of Central factorial
poset with j − 1 descents.

Central factorial permutation: a permutation of the multiset
{1, 1, 1, 2, 2, 2, . . . , n, n, n} with the following order

1 < 1 < 2 < 2 . . . < n < n,

such that for each i , 1 ≤ i ≤ n, the elements occurring between
two occurrences of i are at least i .
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Central factorial permutations

Theorem

∑
n≥0

U(n + k , n)tn =

∑2k
j=1 dk,j t

j

(1− t)3k+1
,

where dk,j is the number of linear extensions of Central factorial
poset with j − 1 descents.

Central factorial permutation: a permutation of the multiset
{1, 1, 1, 2, 2, 2, . . . , n, n, n} with the following order

1 < 1 < 2 < 2 . . . < n < n,

such that for each i , 1 ≤ i ≤ n, the elements occurring between
two occurrences of i are at least i .
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Theorem (G-L-Z)

The integer dk,j counts the number of Central factorial
permutation of {1, 1, 1, 2, 2, 2, . . . , k , k , k} with j − 1 descents.
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Jacobi-Stirling polynomials

The Jacobi-Stirling polynomials (in n) fk(n; z) is defined by

fk(n; z) := JS(n + k , n; z),

which can be written as

fk(n; z) = pk,0(n) + pk,1(n)z + · · ·+ pk,k(n)zk .

Note: pk,0(n) = U(n + k, n) and pk,k(n) = S(n + k , n).

Theorem (G-L-Z)

For each integer k and i such that 0 ≤ i ≤ k, there are positive
integers ak,i ,j for 1 ≤ j ≤ 2k − i such that

∑
n≥0

pk,i (n)tn =

∑2k−i
j=1 ak,i ,j t

j

(1− t)3k−i+1
.
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Jacobi-Stirling poset

1. Let Rk be the Central factorial poset on [3k].
2. For any S ⊆ [k], the Jacobi-Stirling poset Rk,S is defined to be
the poset obtained from Rk by removing the points 3m − 2 for
m ∈ S .
3. For 0 ≤ i ≤ k, the set Rk,i is defined by

Rk,i = {Rk,S | S ⊆ [k] with cardinality i}.

Example
R2,1 = {R2,{1},R2,{2}}.
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Jacobi-Stirling posets

Define L (Rk,i ) by

L (Rk,i ) =
⋃
S⊆[k]
|S|=i

L (Rk,S).

Theorem (G-L-Z)

The integer ak,i ,j is the number of elements of L (Rk,i ) with j − 1
descents, i.e.,

∑
π∈L (Rk,i )

tdes(π)+1 =
2k−i∑
j=1

ak,i ,j t
j .
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Jacobi-Stirling posets

(Sketch of the proof) Using the generating function∑
k≥0

fk(n; z)tk =
1

(1− (z + 1)t)(1− 2(z + 2)t) · · · (1− n(z + n)t)

to show that
pk,i (n) =

∑
S⊆[k]
|S|=i

ΩRk,S
(n),

the theorem then follows from P-partition theory.
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Jacobi-Stirling permutations

1. Let
Mn := {1, 1, 1, 2, 2, 2, . . . , n, n, n}

with the following order

1 < 1 < 2 < 2 . . . < n < n.

2. For 0 ≤ i ≤ n, denote by

Mn,i = {Mn \ S | S ⊆ [n] with cardinality i},

where [n] := {1, 2, . . . , n}.
3. A Jacobi-Stirling permutation of Mn,i is a permutation of a
multiset on Mn,i such that for each i , 1 ≤ i ≤ n, the elements
occurring between two occurrences of i are at least i .
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Jacobi-Stirling permutations

Theorem (G-L-Z)

The integer ak,i ,j counts the number of Jacobi-Stirling
permutations of Mk,i with j − 1 descents.

(Sketch of the proof) Let S(Mk,i ) be the set of Jacobi-Stirling
permutations of Mk,i . We construct a bijection

φk,i : L (Rk,i )→ S(Mk,i )

by induction on k , which preserves the number of descents.
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Legendre-Stirling poset

Example 3 (Legendre-Stirling poset)
ΩP(n) = LS(n − 1 + k , n − 1).

Theorem (G-L-Z)

∑
n≥0

LS(n + k , n)tn =

∑2k−1
j=1 bk,j t

j

(1− t)3k+1
,

where bk,j is the number of linear extensions of Legendre-Stirling
poset with j descents.
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Legendre-Stirling permutations

Definition

A Legendre-Stirling permutation is a Jacobi-Stirling permutation of
the multiset {1, 1, 1, 2, 2, 2, . . . , n, n, n} with the following order

1 = 1 < 2 = 2 . . . < n = n.

Here 1̄ = 1 means that neither 11̄ nor 1̄1 counts as a descent.

Note: 122211, as a Legendre-Stirling permutation has 1 descent,
while as a Jacobi-Stirling permutation has 3 descents.
Example
121122 is a Legendre-Stirling permutations, while 222111 is not.

Theorem (Egge, 2010)

The integer bk,j counts the number of Legendre-Stirling
permutations of {1, 1, 1, 2, 2, 2, . . . , k, k, k} with j − 1 descents.
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Legendre-Stirling permutations

Definition
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A q-analogue (with Ana F. Loureiro)

q-differential equations for q-classical polynomials and
q-Jacobi-Stirling numbers

(
Dqf

)
(x) :=

f (qx)− f (x)

(q − 1)x
(1)

The q-classical polynomials share a number of properties and,
among them, we single out the fact they are eigenfunctions of a
second-order q-differential operator of q-Sturm-Liouville type,

Lq := Φ(x)Dq ◦ Dq−1 −Ψ(x)Dq−1

, where Φ is a monic polynomial of degree two at most and Ψ a
polynomial of degree one.
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q-Jacobi-Stirling numbers

The q-Jacobi-Stirling numbers

xn =
n∑

k=0

JSk
n(z ; q)

k−1∏
i=0

(
x − [i ]q

(
z + [i ]q−1

))
,

n−1∏
i=0

(
x − [i ]q

(
z + [i ]q−1

))
=

n∑
k=0

(−1)n−k js
(k)
n (z ; q) xk .
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Thank you!
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