Jacobi-Stirling numbers and Jacobi-Stirling permutations

Jiang Zeng

University Claude Bernard Lyon 1, France

August 08 2013

Plan

This talk is based on the two papers :

Plan

This talk is based on the two papers :

• Y. Gelineau, J. Z., Combinatorial interpretations for the Jacobi-Stirling numbers, EJC, 2010.

Plan

This talk is based on the two papers :

- Y. Gelineau, J. Z., Combinatorial interpretations for the Jacobi-Stirling numbers, EJC, 2010.
- I. Gessel, Z.C. Lin, J. Z., Jacobi-Stirling polynomials and P-partitions, European JC, 2012.

Jacobi polynomials $P_n^{(\alpha,\beta)}(t)$ satisfy the differential equation :

$$(1-t^2)y''(t)+(\beta-\alpha-(\alpha+\beta+2)t)y'(t)+n(n+\alpha+\beta+1)y(t)=0.$$

Jacobi polynomials $P_n^{(\alpha,\beta)}(t)$ satisfy the differential equation :

$$(1-t^2)y''(t) + (\beta - \alpha - (\alpha + \beta + 2)t)y'(t) + n(n+\alpha + \beta + 1)y(t) = 0.$$

Let $\ell_{\alpha,\beta}[y](t)$ be the differential operator of Jacobi :

$$\ell_{lpha,eta}[y](t) = rac{1}{(1-t)^lpha(1+t)^eta} \left(-(1-t)^{lpha+1}(1+t)^{eta+1}y'(t)
ight)'$$

Then $P_n^{(\alpha,\beta)}(t)$ is an eigenfunction of $\ell_{\alpha,\beta}[y](t)$:

$$\ell_{\alpha,\beta}[y](t) = n(n+\alpha+\beta+1)y(t)$$

Everitt-Kwon-Littlejohn-Wellman-Yoon (2007) proved the expansion of the *n*-th composition of $\ell_{\alpha,\beta}$:

$$(1-t)^{\alpha}(1+t)^{\beta}\ell_{\alpha,\beta}^{n}[y](t) = \sum_{k=0}^{n} (-1)^{k} \left(JS(n,k;\alpha+\beta+1)(1-t)^{\alpha+k}(1+t)^{\beta+k}y^{(k)}(t) \right)^{(k)},$$

Everitt-Kwon-Littlejohn-Wellman-Yoon (2007) proved the expansion of the *n*-th composition of $\ell_{\alpha,\beta}$:

$$(1-t)^{\alpha}(1+t)^{\beta}\ell_{\alpha,\beta}^{n}[y](t) = \sum_{k=0}^{n} (-1)^{k} \left(JS(n,k;\alpha+\beta+1)(1-t)^{\alpha+k}(1+t)^{\beta+k}y^{(k)}(t) \right)^{(k)},$$

where JS(n, k; z) are called the Jacobi-Stirling numbers of the second kind defined by

$$X^{n} = \sum_{k=0}^{n} JS(n, k; z) \prod_{i=0}^{k-1} (X - i(z+i)).$$

Everitt-Kwon-Littlejohn-Wellman-Yoon (2007) proved the expansion of the *n*-th composition of $\ell_{\alpha,\beta}$:

$$(1-t)^{\alpha}(1+t)^{\beta}\ell_{\alpha,\beta}^{n}[y](t) = \sum_{k=0}^{n} (-1)^{k} \left(JS(n,k;\alpha+\beta+1)(1-t)^{\alpha+k}(1+t)^{\beta+k}y^{(k)}(t) \right)^{(k)},$$

where JS(n, k; z) are called the Jacobi-Stirling numbers of the second kind defined by

$$X^{n} = \sum_{k=0}^{n} JS(n, k; z) \prod_{i=0}^{k-1} (X - i(z+i)).$$

Equivalently these numbers can be defined by the recurrence :

$$JS(n, k; z) = JS(n-1, k-1; z) + k(k+z) JS(n-1, k; z), \quad n, k \ge 1,$$
$$JS(0, 0; z) = 1, \qquad JS(n, k; z) = 0 \quad \text{if } k \notin \{1, \dots, n\}.$$

Equivalently these numbers can be defined by the recurrence :

$$JS(n, k; z) = JS(n-1, k-1; z) + k(k+z) JS(n-1, k; z), \quad n, k \ge 1,$$

$$JS(0, 0; z) = 1, \qquad JS(n, k; z) = 0 \quad \text{if } k \notin \{1, \dots, n\}.$$

When z = 1, LS(n, k) := JS(n, k; 1) are called Legendre-Stirling numbers.

$k \setminus n$	0	1	2	3	4
0	1	0	0	0	0
1		1	1+z	$1+2z+z^2$	$1 + 3z + 3z^2 + z^3$
2			1	5 + 3z	$21 + 24z + 7z^2$
3				1	14 + 6z
4					1

Recall: Stirling numbers of second kind

The **Stirling numbers (of second kind)** S(n, k) are defined by the relation :

$$S(n,k) = S(n-1,k-1) + kS(n-1,k).$$

Recall: Stirling numbers of second kind

The **Stirling numbers (of second kind)** S(n, k) are defined by the relation :

$$S(n, k) = S(n-1, k-1) + kS(n-1, k).$$

They count : partitions of $[n]:=\{1,2,\ldots,n\}$ into k blocks, For example, $\pi=\big\{\{1,3,6\},\{2,5\},\{4\}\big\}$

is a partition of [6] in 3 blocks.

Central factorial numbers

The **central factorial numbers (of second kind)** U(n, k) are defined by relation :

$$U(n,k) = U(n-1,k-1) + k^2 U(n-1,k).$$

Central factorial numbers

The **central factorial numbers (of second kind)** U(n, k) are defined by relation :

$$U(n,k) = U(n-1,k-1) + k^2 U(n-1,k).$$

They count (Dumont, 1974):

- the pairs (π_1, π_2) of partitions of [n] into k blocks, with $\min(\pi_1) = \min(\pi_2)$,
- the number of partitions of $\{1, 1', 2, 2', \dots, n, n'\}$ in k blocks such that, for each block B, if i is the smallest integer with $i \in B$ or $i' \in B$, then both i and i' are in B.

Example

For example, for the two partitions of [6] in 3 blocks,

$$\pi_1 = \big\{ \{1,6\}, \{2,3,5\}, \{4\} \big\}, \quad \pi_2 = \big\{ \{1,5\}, \{2,3\}, \{4,6\} \big\},$$

we have $min(\pi_1) = min(\pi_2) = \{1, 2, 4\}$. It corresponds to the partition π of $\{1, 1', 2, 2', \dots, 6, 6'\}$ into 3 blocks.

$$\pi = \left\{ \{1, 1', 5', 6\}, \{2, 2', 3, 3', 5\}, \{4, 4', 6'\} \right\}$$

Jacobi-Stirling numbers :

$$JS(n, k; z) = JS(n-1, k-1; z) + k(k+z) JS(n-1, k; z), \qquad n, k \ge 1.$$

Jacobi-Stirling numbers :

$$JS(n, k; z) = JS(n-1, k-1; z) + k(k+z) JS(n-1, k; z), \qquad n, k \ge 1.$$

 \Longrightarrow JS(n, k; z) is a polynomial in z of degree n-k:

$$JS(n,k;z) = a_{n,k}^{(0)} + a_{n,k}^{(1)}z + \cdots + a_{n,k}^{(n-k)}z^{n-k}.$$

Jacobi-Stirling numbers:

$$JS(n, k; z) = JS(n-1, k-1; z) + k(k+z) JS(n-1, k; z), \qquad n, k \ge 1.$$

 \Longrightarrow JS(n, k; z) is a polynomial in z of degree n-k:

$$JS(n,k;z) = a_{n,k}^{(0)} + a_{n,k}^{(1)}z + \cdots + a_{n,k}^{(n-k)}z^{n-k}.$$

Moreover,

$$a_{n,k}^{(n-k)}=S(n,k),$$

$$a_{n,k}^{(0)}=U(n,k).$$

Legendre-Stirling numbers

Definition (Andrews-Littlejohn, 2009)

A signed k-partition of $[\pm n]_0 = \{0, \pm 1, \pm 2, \dots, \pm n\}$ is a partition of $[\pm n]_0$ into k+1 blocks B_0, B_1, \dots, B_k , such that

- $0 \in B_0$ and $\forall i \in [n], \{i, -i\} \not\subset B_0$,
- $\forall j \in [k]$, i is the smallest integer > 0 such that $i \in B_j$ or $-i \in B_j \Leftrightarrow \{i, -i\} \subset B_j$.

Legendre-Stirling numbers

Definition (Andrews-Littlejohn, 2009)

A signed k-partition of $[\pm n]_0 = \{0, \pm 1, \pm 2, \dots, \pm n\}$ is a partition of $[\pm n]_0$ into k+1 blocks B_0, B_1, \dots, B_k , such that

- $0 \in B_0$ and $\forall i \in [n], \{i, -i\} \not\subset B_0$,
- $\forall j \in [k]$, i is the smallest integer > 0 such that $i \in B_j$ or $-i \in B_j \Leftrightarrow \{i, -i\} \subset B_j$.

For example,

$$\pi = \left\{ \{ 0, 2, -5, -6 \}, \{ \pm 1, -2, 6 \}, \{ \pm 3 \}, \{ \pm 4, 5 \} \right\}$$

is a signed 3-partition of $[\pm 6]_0$.

Legendre-Stirling numbers

Definition (Andrews-Littlejohn, 2009)

A signed k-partition of $[\pm n]_0 = \{0, \pm 1, \pm 2, \dots, \pm n\}$ is a partition of $[\pm n]_0$ into k+1 blocks B_0, B_1, \dots, B_k , such that

- $0 \in B_0$ and $\forall i \in [n], \{i, -i\} \not\subset B_0$,
- $\forall j \in [k]$, i is the smallest integer > 0 such that $i \in B_j$ or $-i \in B_j \Leftrightarrow \{i, -i\} \subset B_j$.

For example,

$$\pi = \{\{0, 2, -5, -6\}, \{\pm 1, -2, 6\}, \{\pm 3\}, \{\pm 4, 5\}\}$$

is a signed 3-partition of $[\pm 6]_0$.

Theorem (Andrews-Littlejohn, 2009)

The Legendre-Stirling number LS(n, k) is the number of signed k-partitions of $[\pm n]_0$.

Theorem (Gelineau-Z., 2009)

The coefficient $a_{n,k}^{(i)}$ is equal to the number of signed k-partitions of $[\pm n]_0$ with i negative numbers in B_0 .

Theorem (Gelineau-Z., 2009)

The coefficient $a_{n,k}^{(i)}$ is equal to the number of signed k-partitions of $[\pm n]_0$ with i negative numbers in B_0 .

Proof : Since JS(n, k; z) satisfy the recurrence relation :

$$JS(n, k; z) = JS(n-1, k-1; z) + k(k+z) JS(n-1, k; z),$$

it suffices to verify that the numbers satisfy the same recurrence:

$$a_{n,k}^{(i)} = a_{n-1,k-1}^{(i)} + k a_{n-1,k}^{(i-1)} + k^2 a_{n-1,k}^{(i)}.$$

Theorem (Gelineau-Z., 2009)

The coefficient $a_{n,k}^{(i)}$ is equal to the number of signed k-partitions of $[\pm n]_0$ with i negative numbers in B_0 .

Proof : Since JS(n, k; z) satisfy the recurrence relation :

$$JS(n, k; z) = JS(n-1, k-1; z) + k(k+z) JS(n-1, k; z),$$

it suffices to verify that the numbers satisfy the same recurrence:

$$a_{n,k}^{(i)} = \underbrace{a_{n-1,k-1}^{(i)}}_{B_k = \{\pm n\}} + \underbrace{ka_{n-1,k}^{(i-1)}}_{-n \in B_0} + \underbrace{k^2a_{n-1,k}^{(i)}}_{\text{otherwise}}.$$

$$a_{n,k}^{(i)} = \sharp \{ \text{signed k- partitions } [\pm n]_0 \text{ with } i \text{ terms } < 0 \text{ in } B_0 \}$$

$$a_{n,k}^{(i)} = \sharp \{ \text{signed k- partitions } [\pm n]_0 \text{ with } i \text{ terms } < 0 \text{ in } B_0 \}$$

 $\Rightarrow \text{For } i = n - k, \text{ we recover the interpretation of } S(n, k).$

$$\pi = \left\{ \{0, -3, -5, -6\}, \{\pm 1, 3, 6\}, \{\pm 2, 5\}, \{\pm 4\} \right\}$$

$$\downarrow \qquad \qquad \pi' = \left\{ \{1, 3, 6\}, \{2, 5\}, \{4\} \right\}$$

 \Rightarrow For i = 0, we recover the interpretation of U(n, k).

$$\pi = \{\{0,3,6\}, \{\pm 1, -3\}, \{\pm 2, -5\}, \{\pm 4, 5, -6\}\}\}$$

$$\downarrow \downarrow$$

$$\pi = \{\{\pm 1, \pm 3\}, \{\pm 2, -5\}, \{\pm 4, 5, \pm 6\}\}.$$

Jacobi-Stirling numbers of first kind

The Jacobi-Stirling numbers of first kind js(n, k; z) are defined by reversing the connection relation for JS(n, k; z):

$$X^{n} = \sum_{k=0}^{n} JS(n, k; z) \prod_{i=0}^{k-1} (X - i(z+i)),$$

$$\prod_{i=0}^{n-1} (X - i(z+i)) = \sum_{k=0}^{n} (-1)^{n-k} js(n, k; z) X^{k}.$$

Jacobi-Stirling numbers of first kind

The Jacobi-Stirling numbers of first kind js(n, k; z) are defined by reversing the connection relation for JS(n, k; z):

$$X^{n} = \sum_{k=0}^{n} JS(n, k; z) \prod_{i=0}^{k-1} (X - i(z+i)),$$

$$\prod_{i=0}^{n-1} (X - i(z+i)) = \sum_{k=0}^{n} (-1)^{n-k} \mathbf{js}(n, k; z) X^{k}.$$

These numbers satisfy then the recurrence relation :

$$js(n, k; z) = js(n-1, k-1; z) + (n-1)(n-1+z)js(n-1, k; z).$$

$k \setminus n$	0	1	2	3	4
0	1	0	0	0	0
1		1	z + 1	$2z^2+6z+4$	$6z^3 + 36z^2 + 66z + 36$
2			1	3z + 5	$11z^2 + 48z + 49$
3				1	6 <i>z</i> + 14
4					1

The Stirling numbers (of first kind) s(n, k):

$$s(n, k) = s(n-1, k-1) + (n-1)s(n-1, k).$$

The central factorial numbers (of first kind) u(n, k):

$$u(n,k) = u(n-1,k-1) + (n-1)^2 u(n-1,k).$$

The **Stirling numbers (of first kind)** s(n, k):

$$s(n, k) = s(n-1, k-1) + (n-1)s(n-1, k).$$

The central factorial numbers (of first kind) u(n, k):

$$u(n,k) = u(n-1,k-1) + (n-1)^2 u(n-1,k).$$

s(n, k) counts the number of permutations of [n] with k cycles.

Theorem

js(n, k; z) is a polynomial in z with degree n - k:

$$js(n, k; z) = b_{n,k}^{(0)} + b_{n,k}^{(1)} z + \dots + b_{n,k}^{(n-k)} z^{n-k}.$$

Moreover,

$$b_{n,k}^{(n-k)}=s(n,k),$$

$$b_{n,k}^{(0)} = u(n,k).$$

Combinatorial interpretations

Let $\Sigma(n, k) := \operatorname{all}(\sigma, \tau)$ such that

- σ is a permutation of $\{0, 1, ..., n\}$, τ is a permutation of $\{1, ..., n\}$, and both have k cycles.
- 1 and 0 are in the same cycle in σ .
- Among their nonzero entries, σ and τ have the same cyclic minima.

Theorem (Gelineau-Z., 2009)

js(n,k;z) is the enumerative polynomial in z for $\Sigma(n,k)$ with respect to the number of non-zero left-to-right minima in the cycle containing 0 in σ , written as a word beginning with $\sigma(0)\sigma^2(0)\ldots$

Jacobi-Stirling posets and permutations

Diagonal generating functions

For fixed k, consider the Diagonal sequence of Jacobi-Stirling numbers $\{JS(n+k,n;z)\}_{n>0}$:

$$JS(n + k, n; z) = p_{k,0}(n) + p_{k,1}(n)z + \cdots + p_{k,k}(n)z^{k}$$

Theorem (G-L-Z)

There is a polynomial $A_{k,i}(t) \in \mathbb{N}[t]$ of degree 2k - i, with $A_{k,i}(0) = 0$ such that

$$\sum_{n\geq 0} p_{k,i}(n)t^n = \frac{A_{k,i}(t)}{(1-t)^{3k-i+1}}$$

Diagonal generating functions

For fixed k, consider the Diagonal sequence of Jacobi-Stirling numbers $\{JS(n+k,n;z)\}_{n>0}$:

$$JS(n + k, n; z) = p_{k,0}(n) + p_{k,1}(n)z + \cdots + p_{k,k}(n)z^{k}$$

Theorem (G-L-Z)

There is a polynomial $A_{k,i}(t) \in \mathbb{N}[t]$ of degree 2k - i, with $A_{k,i}(0) = 0$ such that

$$\sum_{n>0} p_{k,i}(n)t^n = \frac{A_{k,i}(t)}{(1-t)^{3k-i+1}}$$

Problem: What do the coefficients of $A_{k,i}$ mean?

First values

k∖i	0	1	2
0	$\frac{1}{1-t}$		
1	$\frac{t+t^2}{(1-t)^4}$	$\frac{t}{(1-t)^3}$	
2	$\frac{t + 14t^2 + 21t^3 + 4t^4}{(1-t)^7}$		

Let P be a poset on [k] with partial order \prec . A P-partition is a function $f:[k] \to \mathbb{N}$ such that

- (i) if $i \prec j$ then $f(i) \leq f(j)$
- (ii) if $i \prec j$ and i > j then f(i) < f(j).

Example

Consider the following poset:

We have $2 \prec 3$ and $2 \prec 1$ and 2 > 1. Hence a *P*-partition of the poset is a function f satisfies $f(2) \leq f(3)$ and f(2) < f(1).

A linear extension of a poset P is an extension of P to a total order. Denote by $\mathcal{L}(P)$ the set of all linear extensions of P. Example

For the following poset

we have $\mathcal{L}(P) = \{213, 231\}.$

The P-partitions of a poset P can be refined by the linear extensions of P.

Lemma

Let $\mathscr{A}(P)$ be the set of all P-partitions of a poset P. We have the disjoint union

$$\mathscr{A}(P) = \coprod_{\pi \in \mathscr{L}(P)} \mathscr{A}(\pi).$$

(Sketch of the proof) This can be proved by induction on the number of incomparable pairs in *P*.

The order polynomial $\Omega_P(n)$ is the number of P-partitions of a poset P with all parts in [n]. Example

1. We have $\Omega_P(n) = 2\binom{n+1}{3}$ for the following poset.

The order polynomial $\Omega_P(n)$ is the number of P-partitions of a poset P with all parts in [n].

Example

1. We have $\Omega_P(n) = 2\binom{n+1}{3}$ for the following poset.

2. If P is the antichain on [k] then $\Omega_P(n) = n^k$.

The order polynomial $\Omega_P(n)$ is the number of P-partitions of a poset P with all parts in [n].

Example

1. We have $\Omega_P(n) = 2\binom{n+1}{3}$ for the following poset.

- 2. If P is the antichain on [k] then $\Omega_P(n) = n^k$.
- 3. If P is the (natural ordered) chain on [k] then $\Omega_P(n) =$ the number of k-multisets on $[n] = \binom{n+k-1}{k}$.

Theorem (P-partition theory)

Let P be a poset on [k]. Then we have

$$\sum_{n\geq 0} \frac{\Omega_P(n)t^n}{(1-t)^{k+1}} = \frac{\sum_{\pi\in\mathscr{L}(P)} t^{des(\pi)+1}}{(1-t)^{k+1}}.$$

(Sketch of proof) By the Lemma, it is enough to consider the case in which P is a chain on $\lceil k \rceil$ and reduce to the binomial theorem:

$$\sum_{n>0} \binom{n+k-1}{k} t^n = \frac{t}{(1-t)^{k+1}}. \quad \Box$$

Antichain, Permutations

Example 1 (Antichain)

If P is the antichain on [k], we have

$$\sum_{n>0} n^k t^n = \frac{\sum_{i=1}^k A(k,i)t^i}{(1-t)^{k+1}},$$

where the Eulerian number A(k, i) counts the number of permutations of [k] with i-1 descents.

Stirling poset

Example 2 (Stirling poset, Park 1994)

Consider the above poset on [2k], we have

$$\Omega_{P}(n) = \sum_{1 \le f(2) \le \dots \le f(2k) \le n} f(2)f(4) \dots f(2k)$$

$$= [t^{k}] \frac{1}{(1-t)(1-2t) \dots (1-nt)}$$

$$= S(n+k,n).$$

Stirling permutations

Theorem (Park, 1994)

$$\sum_{n\geq 0} S(n+k,n)t^n = \frac{\sum_{j=1}^k \frac{C_{k,j}}{C_{k,j}}t^j}{(1-t)^{2k+1}},$$

where $c_{k,j}$ counts the linear extensions of Stirling poset with j-1 descents.

Stirling permutations

Theorem (Park, 1994)

$$\sum_{n\geq 0} S(n+k,n)t^n = \frac{\sum_{j=1}^k c_{k,j} t^j}{(1-t)^{2k+1}},$$

where $c_{k,j}$ counts the linear extensions of Stirling poset with j-1 descents.

Stirling permutation: a permutation of $\{1, 1, 2, 2, ..., n, n\}$ such that, for each i, $1 \le i \le n$, the elements occurring between two occurrences of i are at least i.

Example

2211, 1221, 1122 are all the Stirling permutations of $\{1, 1, 2, 2\}$.

Theorem (Gessel and Stanley, 1978)

The integer $c_{k,j}$ counts the number of Stirling permutations of $\{1,1,2,2,\ldots,k,k\}$ with j-1 descents.

Central factorial poset

Example 4 (Central factorial poset) We have

$$\sum_{n=0}^{\infty} U(n,k)x^n = \frac{x^k}{(1-1^2x)(1-2^2x)\cdots(1-k^2x)},$$

so that

$$\sum_{n=0}^{\infty} U(n+k,k)x^n = \frac{1}{(1-1^2x)(1-2^2x)\cdots(1-k^2x)}.$$

By the same kind of reasoning for Stirling posets, we see that $\Omega_P(n) = U(n+k,n)$.

Central factorial permutations

Theorem

$$\sum_{n\geq 0} U(n+k,n)t^n = \frac{\sum_{j=1}^{2k} \frac{d_{k,j}t^j}{(1-t)^{3k+1}},$$

where $d_{k,j}$ is the number of linear extensions of Central factorial poset with j-1 descents.

Central factorial permutations

Theorem

$$\sum_{n>0} U(n+k,n)t^n = \frac{\sum_{j=1}^{2k} \frac{d_{k,j}t^j}{(1-t)^{3k+1}},$$

where $d_{k,j}$ is the number of linear extensions of Central factorial poset with j-1 descents.

Central factorial permutation: a permutation of the multiset $\{1,1,\overline{1},2,2,\overline{2},\ldots,n,n,\overline{n}\}$ with the following order

$$\overline{1} < 1 < \overline{2} < 2 \ldots < \overline{n} < n$$

such that for each i, $1 \le i \le n$, the elements occurring between two occurrences of i are at least i.

Theorem (G-L-Z)

The integer $d_{k,j}$ counts the number of Central factorial permutation of $\{1, 1, \overline{1}, 2, 2, \overline{2}, \dots, k, k, \overline{k}\}$ with j-1 descents.

Jacobi-Stirling polynomials

The Jacobi-Stirling polynomials (in n) $f_k(n; z)$ is defined by

$$f_k(n;z) := JS(n+k,n;z),$$

which can be written as

$$f_k(n;z) = p_{k,0}(n) + p_{k,1}(n)z + \cdots + p_{k,k}(n)z^k.$$

Note: $p_{k,0}(n) = U(n+k, n)$ and $p_{k,k}(n) = S(n+k, n)$.

Theorem (G-L-Z)

For each integer k and i such that $0 \le i \le k$, there are positive integers $a_{k,i,j}$ for $1 \le j \le 2k - i$ such that

$$\sum_{n>0} p_{k,i}(n)t^n = \frac{\sum_{j=1}^{2k-i} a_{k,i,j}t^j}{(1-t)^{3k-i+1}}.$$

Jacobi-Stirling poset

- 1. Let R_k be the Central factorial poset on [3k].
- 2. For any $S \subseteq [k]$, the Jacobi-Stirling poset $R_{k,S}$ is defined to be the poset obtained from R_k by removing the points 3m-2 for $m \in S$.
- 3. For $0 \le i \le k$, the set $R_{k,i}$ is defined by

$$R_{k,i} = \{R_{k,S} \mid S \subseteq [k] \text{ with cardinality } i\}.$$

Example

$$R_{2,1} = \{R_{2,\{1\}}, R_{2,\{2\}}\}.$$

Jacobi-Stirling posets

Define $\mathcal{L}(R_{k,i})$ by

$$\mathscr{L}(R_{k,i}) = \bigcup_{\substack{S \subseteq [k] \\ |S|=i}} \mathscr{L}(R_{k,S}).$$

Theorem (G-L-Z)

The integer $a_{k,i,j}$ is the number of elements of $\mathcal{L}(R_{k,i})$ with j-1 descents, i.e.,

$$\sum_{\pi \in \mathscr{L}(R_{k,i})} t^{ extit{des}(\pi)+1} = \sum_{j=1}^{2k-i} oldsymbol{a}_{k,i,j} t^j.$$

Jacobi-Stirling posets

(Sketch of the proof) Using the generating function

$$\sum_{k>0} f_k(n;z)t^k = \frac{1}{(1-(z+1)t)(1-2(z+2)t)\cdots(1-n(z+n)t)}$$

to show that

$$p_{k,i}(n) = \sum_{\substack{S \subseteq [k] \ |S|=i}} \Omega_{R_{k,S}}(n),$$

the theorem then follows from *P*-partition theory.

Jacobi-Stirling permutations

1. Let

$$M_n := \{1, 1, \overline{1}, 2, 2, \overline{2}, \ldots, n, n, \overline{n}\}$$

with the following order

$$\overline{1} < 1 < \overline{2} < 2 \ldots < \overline{n} < n$$
.

2. For $0 \le i \le n$, denote by

$$M_{n,i} = \{M_n \setminus S \mid S \subseteq [\overline{n}] \text{ with cardinality } i\},$$

where $[\overline{n}] := {\overline{1}, \overline{2}, \dots, \overline{n}}.$

3. A Jacobi-Stirling permutation of $M_{n,i}$ is a permutation of a multiset on $M_{n,i}$ such that for each $i, 1 \le i \le n$, the elements occurring between two occurrences of i are at least i.

Jacobi-Stirling permutations

Theorem (G-L-Z)

The integer $a_{k,i,j}$ counts the number of Jacobi-Stirling permutations of $M_{k,i}$ with j-1 descents.

(Sketch of the proof) Let $\mathfrak{S}(M_{k,i})$ be the set of Jacobi-Stirling permutations of $M_{k,i}$. We construct a bijection

$$\phi_{k,i}: \mathscr{L}(R_{k,i}) \to \mathfrak{S}(M_{k,i})$$

by induction on k, which preserves the number of descents.

Legendre-Stirling poset

Example 3 (Legendre-Stirling poset) $\Omega_P(n) = LS(n-1+k, n-1)$.

Theorem (G-L-Z)

$$\sum_{n\geq 0} LS(n+k,n)t^n = \frac{\sum_{j=1}^{2k-1} \frac{b_{k,j}}{b_{k,j}}t^j}{(1-t)^{3k+1}},$$

where $b_{k,j}$ is the number of linear extensions of Legendre-Stirling poset with j descents.

Legendre-Stirling permutations

Definition

A Legendre-Stirling permutation is a Jacobi-Stirling permutation of the multiset $\{1, 1, \overline{1}, 2, 2, \overline{2}, \dots, n, n, \overline{n}\}$ with the following order

$$\overline{1} = 1 < \overline{2} = 2 \dots < \overline{n} = n.$$

Here $\overline{1} = 1$ means that neither $1\overline{1}$ nor $\overline{1}1$ counts as a descent.

Legendre-Stirling permutations

Definition

A Legendre-Stirling permutation is a Jacobi-Stirling permutation of the multiset $\{1,1,\overline{1},2,2,\overline{2},\ldots,n,n,\overline{n}\}$ with the following order

$$\overline{1} = 1 < \overline{2} = 2 \ldots < \overline{n} = n.$$

Here $\bar{1}=1$ means that neither $1\bar{1}$ nor $\bar{1}1$ counts as a descent. Note: $122\bar{2}1\bar{1}$, as a Legendre-Stirling permutation has 1 descent, while as a Jacobi-Stirling permutation has 3 descents.

Example

 $1\overline{2}1\overline{1}22$ is a Legendre-Stirling permutations, while $2\overline{2}211\overline{1}$ is not.

Theorem (Egge, 2010)

The integer $b_{k,j}$ counts the number of Legendre-Stirling permutations of $\{1,1,\overline{1},2,2,\overline{2},\ldots,k,k,\overline{k}\}$ with j-1 descents.

A q-analogue (with Ana F. Loureiro)

q-differential equations for q-classical polynomials and q-Jacobi-Stirling numbers

$$(D_q f)(x) := \frac{f(qx) - f(x)}{(q-1)x}$$
 (1)

The q-classical polynomials share a number of properties and, among them, we single out the fact they are eigenfunctions of a second-order q-differential operator of q-Sturm-Liouville type,

$$\mathcal{L}_q := \Phi(x) D_q \circ D_{q^{-1}} - \Psi(x) D_{q^{-1}}$$

, where Φ is a monic polynomial of degree two at most and Ψ a polynomial of degree one.

q-Jacobi-Stirling numbers

The q-Jacobi-Stirling numbers

$$x^{n} = \sum_{k=0}^{n} \mathsf{JS}_{n}^{k}(z;q) \prod_{i=0}^{k-1} (x - [i]_{q}(z + [i]_{q^{-1}})),$$
$$\prod_{i=0}^{n-1} (x - [i]_{q}(z + [i]_{q^{-1}})) = \sum_{k=0}^{n} (-1)^{n-k} \mathsf{js}_{n}^{(k)}(z;q) x^{k}.$$

Thank you!